An overview of the planned CCAT software system

CCAT will be a 25m diameter sub-millimeter telescope capable of operating in the 0.2 to 2.1mm wavelength range. It will be located at an altitude of 5600m on Cerro Chajnantor in northern Chile near the ALMA site. The anticipated first generation instruments include large format (60,000) kinetic inductance detector (KID) cameras, a large format heterodyne array and a direct detection multi-object spectrometer. The paper describes the architecture of the CCAT software and the development strategy.

[1]  Tim Jenness,et al.  Science returns of flexible scheduling on UKIRT and the JCMT , 2004, SPIE Astronomical Telescopes + Instrumentation.

[2]  David Berry,et al.  SMURF: SubMillimeter User Reduction Facility , 2013 .

[3]  Stewart McLay,et al.  The ALMA OT in early science: supporting multiple customers , 2012, Other Conferences.

[4]  J. Sayers,et al.  The CCAT Software System , 2014, 1401.8280.

[5]  Tim Jenness,et al.  Sharing code and support between heterogeneous telescopes: the UKIRT and JCMT joint software projects , 2002, SPIE Astronomical Telescopes + Instrumentation.

[6]  Steve Padin,et al.  The CCAT 25m diameter submillimeter-wave telescope , 2012, Other Conferences.

[7]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[8]  G. A. Renting,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[9]  Joseph W. Fowler,et al.  The Atacama Cosmology Telescope Project , 2004, SPIE Astronomical Telescopes + Instrumentation.

[10]  David Berry,et al.  JCMT Science Archive: Advanced Heterodyne Data Products Pipeline , 2008 .

[11]  Roberto Gilmozzi,et al.  Ground-based and Airborne Telescopes VII , 2008 .

[12]  P. Goldsmith Studying the formation and development of molecular clouds : with the CCAT Heterodyne Array Instrument (CHAI) , 2012 .

[13]  A. Kovacs,et al.  CRUSH: fast and scalable data reduction for imaging arrays , 2008, Astronomical Telescopes + Instrumentation.

[14]  Simon J. E. Radford Observing Conditions for Submillimeter Astronomy , 2011 .

[16]  Henrik Kniberg,et al.  Lean from the Trenches: Managing Large-Scale Projects with Kanban , 2011 .

[17]  Gerd Heber,et al.  An overview of the HDF5 technology suite and its applications , 2011, AD '11.

[18]  Douglas Scott,et al.  SWCam: the short wavelength camera for the CCAT Observatory , 2014, Astronomical Telescopes and Instrumentation.

[19]  S. Padin,et al.  The Cosmic Background Imager , 2000, astro-ph/0012212.

[20]  Edward J. Wollack,et al.  The QUIET Instrument , 2012, 1207.5562.

[21]  Tim Jenness,et al.  ORAC-DR: Astronomy data reduction pipeline , 2013 .

[22]  Per Friberg,et al.  Setting the standard: 25 years of operating the JCMT , 2014, Astronomical Telescopes and Instrumentation.

[23]  Lisa J. Storrie-Lombardi Planning Observations for a SIRTF Legacy Science Proposal , 1999 .

[24]  Keith Shortridge,et al.  Learning from 25 years of the extensible N-Dimensional Data Format , 2014, Astron. Comput..

[25]  Scott C. Chapman,et al.  X-Spec: A multi-object, trans-millimeter-wave spectrometer for CCAT , 2014, 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[26]  Thomas A. Sebring The Cornell Caltech Atacama Telescope: progress and plans 2010 , 2010, Astronomical Telescopes + Instrumentation.

[27]  C. E. Honingh,et al.  SMART: The KOSMA Sub-Millimeter Array Receiver for Two frequencies , 2003, SPIE Astronomical Telescopes + Instrumentation.

[28]  G. A. Renting,et al.  Status of LOFAR Data in HDF5 Format , 2012 .

[29]  Rudolf F. Albrecht,et al.  Java for astronomy: software development at ESO/ST-ECF. , 1999 .

[30]  Frossie Economou,et al.  Data Management At the UKIRT and JCMT , 2011, 1111.5855.

[31]  Douglas Scott,et al.  Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.

[32]  Douglas Scott,et al.  Map-making for the Next Generation of Ground-based Submillimeter Instruments , 2014 .

[33]  A. Belloche,et al.  APECS : the Atacama pathfinder experiment control system , 2006 .

[34]  Frossie Economou,et al.  ORAC: a modern observing system for UKIRT , 2000, Astronomical Telescopes and Instrumentation.

[35]  T. Jenness,et al.  Advantages of Extensible Self-described Data Formats: Lessons Learned from NDF , 2014 .

[36]  T. Phillips,et al.  Millimeter and Submillimeter Detectors for Astronomy , 2003 .

[37]  S. Williams,et al.  Spectral Line Selection in the ALMA Observing Tool , 2013 .

[38]  Sunil R. Golwala,et al.  The Design and Science Goals of LWCam, the CCAT Long-Wavelength Imager , 2013 .

[39]  Phil J. Puxley,et al.  Science planning for the Gemini 8-m telescopes , 1997, Optics & Photonics.

[40]  T. Jenness,et al.  HARP/ACSIS: a submillimetre spectral imaging system on the James Clerk Maxwell Telescope , 2009, 0907.3610.

[41]  F. Schuller,et al.  BoA: a versatile software for bolometer data reduction , 2012, Other Conferences.

[42]  Joshua O. Gundersen,et al.  The Q/U Imaging ExperimenT Instrument , 2013 .

[43]  M. J. Currie Automated Removal of Bad-Baseline Spectra from ACSIS/HARP Heterodyne Time Series , 2013 .

[44]  J. Beeman,et al.  The Large APEX BOlometer CAmera LABOCA , 2009, 0903.1354.

[45]  K. Grainge,et al.  BLAZARS IN THE FERMI ERA: THE OVRO 40 m TELESCOPE MONITORING PROGRAM , 2010, 1011.3111.

[46]  Gopal Narayanan,et al.  First observations with SuperCam and future plans , 2012, Other Conferences.

[47]  Robert H. Lupton,et al.  An open source application framework for astronomical imaging pipelines , 2010, Astronomical Telescopes + Instrumentation.

[48]  Hiroshige Yoshida,et al.  SHARC II: a Caltech submillimeter observatory facility camera with 384 pixels , 2003, SPIE Astronomical Telescopes + Instrumentation.

[49]  Gildas Team,et al.  GILDAS: Grenoble Image and Line Data Analysis Software , 2013 .