A multigrid‐based shifted Laplacian preconditioner for a fourth‐order Helmholtz discretization
暂无分享,去创建一个
Cornelis W. Oosterlee | Scott P. MacLachlan | N. Umetani | S. MacLachlan | C. Oosterlee | N. Umetani | Nobuyuki Umetani
[1] G. McMechan,et al. Multifrequency viscoacoustic modeling and inversion , 1996 .
[2] William L. Briggs,et al. A multigrid tutorial, Second Edition , 2000 .
[3] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[4] Soohyun Kim,et al. Multigrid Simulation for High-Frequency Solutions of the Helmholtz Problem in Heterogeneous Media , 2002, SIAM J. Sci. Comput..
[5] Erkki Heikkola,et al. An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation , 2007, J. Comput. Phys..
[6] Long Chen. INTRODUCTION TO MULTIGRID METHODS , 2005 .
[7] StübenKlaus. Algebraic multigrid (AMG) , 1983 .
[8] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[9] Thomas A. Manteuffel,et al. Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..
[10] P. M. De Zeeuw,et al. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .
[11] Cornelis W. Oosterlee,et al. Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..
[12] William L. Briggs,et al. A multigrid tutorial , 1987 .
[13] R. Pratt. Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .
[14] I. Babuska,et al. Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .
[15] Patrick Joly,et al. Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem , 1990 .
[16] Eli Turkel,et al. Conjugate gradient coupled with multi-grid for an indefinite problem , 1984 .
[17] Stefan A. Sauter,et al. Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..
[18] C. Shin,et al. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .
[19] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[20] Cornelis Vuik,et al. Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..
[21] R. Kettler. Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods , 1982 .
[22] Cornelis Vuik,et al. A new iterative solver for the time-harmonic wave equation , 2006 .
[23] G. Wittum. On the Robustness of ILU Smoothing , 1989 .
[24] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[25] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[26] Cornelis Vuik,et al. A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation , 2007, J. Comput. Phys..
[27] de Paul Zeeuw. Incomplete line $LU$ as smoother and as preconditioner , 1993 .
[28] Pieter Wesseling,et al. An ILU smoother for the incompressible Navier‐Stokes equations in general co‐ordinates , 1995 .
[29] Dianne P. O'Leary,et al. A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..
[30] A. Bayliss,et al. On accuracy conditions for the numerical computation of waves , 1985 .
[31] M. Khalil,et al. Analysis of linear multigrid methods for elliptic differential equations with discontinuous and anisotropic coefficients , 1989 .
[32] Michael B. Giles,et al. Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .
[33] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[34] I. Singer,et al. A perfectly matched layer for the Helmholtz equation in a semi-infinite strip , 2004 .
[35] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[36] I. Singer,et al. High-order finite difference methods for the Helmholtz equation , 1998 .
[37] W. A. Mulder,et al. A comparison between one-way and two-way wave-equation migration , 2004 .
[38] Cornelis Vuik,et al. Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .
[39] W. A. Mulder,et al. One-way And Two-way Wave-equation Migration , 2003 .
[40] P. Sonneveld,et al. IDR(s): A family of simple and fast algorithms for solving large nonsymmetric linear systems , 2007 .
[41] René-Édouard Plessix,et al. How to choose a subset of frequencies in frequency-domain finite-difference migration , 2004 .
[42] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[43] A. Brandt,et al. WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .