A multigrid‐based shifted Laplacian preconditioner for a fourth‐order Helmholtz discretization

In this paper, an iterative solution method for a fourth-order accurate discretization of the Helmholtz equation is presented. The method is a generalization of that presented in (SIAM J. Sci. Comput. 2006; 27:1471–1492), where multigrid was employed as a preconditioner for a Krylov subspace iterative method. The multigrid preconditioner is based on the solution of a second Helmholtz operator with a complex-valued shift. In particular, we compare preconditioners based on a point-wise Jacobi smoother with those using an ILU(0) smoother, we compare using the prolongation operator developed by de Zeeuw in (J. Comput. Appl. Math. 1990; 33:1–27) with interpolation operators based on algebraic multigrid principles, and we compare the performance of the Krylov subspace method Bi-conjugate gradient stabilized with the recently introduced induced dimension reduction method, IDR(s). These three improvements are combined to yield an efficient solver for heterogeneous problems. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  G. McMechan,et al.  Multifrequency viscoacoustic modeling and inversion , 1996 .

[2]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[3]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[4]  Soohyun Kim,et al.  Multigrid Simulation for High-Frequency Solutions of the Helmholtz Problem in Heterogeneous Media , 2002, SIAM J. Sci. Comput..

[5]  Erkki Heikkola,et al.  An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation , 2007, J. Comput. Phys..

[6]  Long Chen INTRODUCTION TO MULTIGRID METHODS , 2005 .

[7]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[8]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[9]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[10]  P. M. De Zeeuw,et al.  Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .

[11]  Cornelis W. Oosterlee,et al.  Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..

[12]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[13]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[14]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[15]  Patrick Joly,et al.  Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem , 1990 .

[16]  Eli Turkel,et al.  Conjugate gradient coupled with multi-grid for an indefinite problem , 1984 .

[17]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[18]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[19]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[20]  Cornelis Vuik,et al.  Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..

[21]  R. Kettler Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods , 1982 .

[22]  Cornelis Vuik,et al.  A new iterative solver for the time-harmonic wave equation , 2006 .

[23]  G. Wittum On the Robustness of ILU Smoothing , 1989 .

[24]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[25]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[26]  Cornelis Vuik,et al.  A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation , 2007, J. Comput. Phys..

[27]  de Paul Zeeuw Incomplete line $LU$ as smoother and as preconditioner , 1993 .

[28]  Pieter Wesseling,et al.  An ILU smoother for the incompressible Navier‐Stokes equations in general co‐ordinates , 1995 .

[29]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[30]  A. Bayliss,et al.  On accuracy conditions for the numerical computation of waves , 1985 .

[31]  M. Khalil,et al.  Analysis of linear multigrid methods for elliptic differential equations with discontinuous and anisotropic coefficients , 1989 .

[32]  Michael B. Giles,et al.  Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .

[33]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[34]  I. Singer,et al.  A perfectly matched layer for the Helmholtz equation in a semi-infinite strip , 2004 .

[35]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[36]  I. Singer,et al.  High-order finite difference methods for the Helmholtz equation , 1998 .

[37]  W. A. Mulder,et al.  A comparison between one-way and two-way wave-equation migration , 2004 .

[38]  Cornelis Vuik,et al.  Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .

[39]  W. A. Mulder,et al.  One-way And Two-way Wave-equation Migration , 2003 .

[40]  P. Sonneveld,et al.  IDR(s): A family of simple and fast algorithms for solving large nonsymmetric linear systems , 2007 .

[41]  René-Édouard Plessix,et al.  How to choose a subset of frequencies in frequency-domain finite-difference migration , 2004 .

[42]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[43]  A. Brandt,et al.  WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .