Numerical efficiency, locking and unlocking of NURBS finite elements

Abstract The strategy of using finite elements with NURBS shape functions for approximation of both geometry and displacements (“ isogeometric approach ”) is investigated from the point of view of finite element technology. Convergence rates are compared to those of classical finite element approaches utilizing standard Lagrange shape functions. Moreover, typical locking phenomena are examined. It is found that higher order inter-element continuity within the NURBS approach results in identical convergence rates but smaller absolute errors compared to C 0 -continuous approaches. However, NURBS finite elements suffer from the same locking problems as finite elements using Lagrange shape functions. The discrete shear gap (DSG) method, a general framework for formulation of locking-free elements, is applied to develop a new class of NURBS finite elements. The resulting NURBS DSG elements are absolutely free from locking and preserve the property of improved accuracy compared with standard locking-free finite elements. The method is exemplified for the Timoshenko beam model, but may be applied to more general cases.