Description intégrée de processus cellulaires spatiotemporels basée sur un modèle géométrique de transformation

The observation of the dynamics of deformable biological ob jects generate through images sequences a huge amount of information, which usuall y remains only partly analysed. In this paper, we show how an analysis of such time-lapse sequ ences, with a parametric trans- formation model, insures an original characterization of d of biological objects from a set of generic topologies. Those are generated by a lim ited set of parameters describ- ing the dynamics of such objects and of the underlying biolog ical processes. This integrated description reduces the biological process analysis to thestudy of temporal series defined by the descriptors evolution. This approach is illustrated, w hen using an affine transformation, by considering experimental data on intra to supracellular dy namics.

[1]  Jacques Ohayon,et al.  An Integrative Model of the Self-Sustained Oscillating Contractions of Cardiac Myocytes , 2005, Acta biotheoretica.

[2]  Jean-Marc Odobez,et al.  Robust Multiresolution Estimation of Parametric Motion Models , 1995, J. Vis. Commun. Image Represent..

[3]  M. G. Vicker,et al.  The locomotion, shape and pseudopodial dynamics of unstimulated Dictyostelium cells are not random. , 1993, Journal of cell science.

[4]  P. Tracqui,et al.  Quantitative study of dynamic behavior of cell monolayers during in vitro wound healing by optical flow analysis. , 2000, Cytometry.

[5]  F. Siegert,et al.  A gradient method for the quantitative analysis of cell movement and tissue flow and its application to the analysis of multicellular Dictyostelium development. , 1994, Journal of cell science.

[6]  V. Torre,et al.  The use of optical flow to characterize muscle contraction , 2001, Journal of Neuroscience Methods.

[7]  Y. Hirota,et al.  Formation of planar and spiral Ca2+ waves in isolated cardiac myocytes. , 1999, Biophysical journal.

[8]  D. Vittet,et al.  In Vitro Models of Vasculogenesis and Angiogenesis , 2001, Laboratory Investigation.

[9]  A. Darzi,et al.  Motion analysis , 1986 .

[10]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[11]  P. Tracqui,et al.  Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility , 2006, Journal of Cell Science.

[12]  F. Germain,et al.  Characterization of cell deformation and migration using a parametric estimation of image motion , 1999, IEEE Transactions on Biomedical Engineering.

[13]  Denyse Baillargeon,et al.  Bibliographie , 1929 .

[14]  P. Tracqui,et al.  Model Driven Quantification of Individual and Collective Cell Migration , 2004, Acta biotheoretica.

[15]  G J Streekstra,et al.  Velocity estimation of spots in three-dimensional confocal image sequences of living cells. , 2001, Cytometry.

[16]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[17]  C. Richter,et al.  Motion analysis in the hemicochlea. , 2003, Biophysical journal.

[18]  Jacques Ohayon,et al.  Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. , 2004, Journal of theoretical biology.

[19]  P. Tracqui,et al.  Analysis of Cell Motility Combining Cytomechanical Model Simulations and an Optical Flow Method , 2003 .

[20]  M. Sheetz,et al.  Periodic Lamellipodial Contractions Correlate with Rearward Actin Waves , 2004, Cell.

[21]  S. Linder,et al.  Podosomes at a glance , 2005, Journal of Cell Science.

[22]  B. Hinz,et al.  Patterns of spontaneous motility in videomicrographs of human epidermal keratinocytes (HEK). , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[23]  W. Saltzman,et al.  Micron-scale positioning of features influences the rate of polymorphonuclear leukocyte migration. , 2001, Biophysical journal.

[24]  D. Dormann,et al.  Simultaneous quantification of cell motility and protein-membrane-association using active contours. , 2002, Cell motility and the cytoskeleton.

[25]  James A Glazier,et al.  Analysis of tissue flow patterns during primitive streak formation in the chick embryo. , 2005, Developmental biology.

[26]  Y. Sawada,et al.  Diffusion and deformations of single hydra cells in cellular aggregates. , 2000, Biophysical journal.

[27]  Douglas A. Lauffenburger,et al.  Measurement of individual cell migration parameters for human tissue cells , 1992 .