Properties of chromatic polynomials of hypergraphs not held for chromatic polynomials of graphs

Abstract In this paper, we present some properties on chromatic polynomials of hypergraphs which do not hold for chromatic polynomials of graphs. We first show that chromatic polynomials of hypergraphs have all integers as their zeros and contain dense real zeros in the set of real numbers. We then prove that for any multigraph G = ( V , E ) , the number of totally cyclic orientations of G is equal to the value of | P ( H G , − 1 ) | , where P ( H G , λ ) is the chromatic polynomial of a hypergraph H G which is constructed from G . Finally we show that the multiplicity of root “ 0 ” of P ( H , λ ) may be at least 2 for some connected hypergraphs H , and the multiplicity of root “ 1 ” of P ( H , λ ) may be 1 for some connected and separable hypergraphs H and may be 2 for some connected and non-separable hypergraphs H .

[1]  Marko Stosic Categorification of the Dichromatic Polynomial for Graphs , 2005 .

[2]  Jason I. Brown,et al.  On the Location of Roots of Independence Polynomials , 2004 .

[3]  K. Koh,et al.  Chromatic polynomials and chro-maticity of graphs , 2005 .

[4]  Carsten Thomassen,et al.  Density of Chromatic Roots in Minor-Closed Graph Families , 2018, Comb. Probab. Comput..

[5]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[6]  H. Whitney A logical expansion in mathematics , 1932 .

[7]  Paul D. Seymour,et al.  The roots of the independence polynomial of a clawfree graph , 2007, J. Comb. Theory B.

[8]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[9]  Richard P. Stanley Acyclic orientations of graphs , 1973, Discret. Math..

[10]  O. Pikhurko,et al.  Coloring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}d-Embeddable \documentclass[12pt]{minimal} \ , 2014, Discrete & Computational Geometry.

[11]  Manfred Walter Some Results on Chromatic Polynomials of Hypergraphs , 2009, Electron. J. Comb..

[12]  Bill Jackson,et al.  A Zero-Free Interval for Chromatic Polynomials of Graphs , 1993, Combinatorics, Probability and Computing.

[13]  Christopher David Chromatic Polynomials , 2016 .

[14]  Ioan Tomescu Sunflower hypergraphs are chromatically unique , 2004, Discret. Math..

[15]  Carsten Thomassen,et al.  The Zero-Free Intervals for Chromatic Polynomials of Graphs , 1997, Combinatorics, Probability and Computing.

[16]  Criel Merino,et al.  Graph Polynomials and Their Applications I: The Tutte Polynomial , 2008, Structural Analysis of Complex Networks.

[17]  G. Birkhoff A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .

[18]  Feng Ming Dong,et al.  The 3-connectivity of a graph and the multiplicity of zero "2" of its chromatic polynomial , 2012, J. Graph Theory.

[19]  Bernard Eisenberg,et al.  CHARACTERIZATION OF A TREE BY MEANS OF COEFFICIENTS OF THE CHROMATIC POLYNOMIAL , 1972 .

[20]  Dominic Welsh,et al.  The Tutte polynomial , 1999, Random Struct. Algorithms.

[21]  Rhys Price Jones Colourings of hypergraphs , 1976 .

[22]  June Huh,et al.  Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs , 2010, 1008.4749.

[23]  Ewa Drgas-Burchardt,et al.  Chromatic polynomials of hypergraphs , 2007, Appl. Math. Lett..

[24]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[25]  June Huh,et al.  Log-concavity of characteristic polynomials and the Bergman fan of matroids , 2011, 1104.2519.

[26]  Ioan Tomescu Hypergraphs with Pendant Paths are not Chromatically Unique , 2014, Discuss. Math. Graph Theory.

[27]  Klaus Dohmen,et al.  A Broken-Circuits-Theorem for hypergraphs , 1995 .

[28]  Julian A. Allagan,et al.  Chromatic polynomials of some mixed hypergraphs , 2014, Australas. J Comb..

[29]  David S. Johnson,et al.  Hypergraph planarity and the complexity of drawing venn diagrams , 1987, J. Graph Theory.

[30]  Ioan Tomescu,et al.  Chromatic Coefficients of Linear Uniform Hypergraphs , 1998, J. Comb. Theory, Ser. B.

[31]  Julie Zhang,et al.  An Introduction to Chromatic Polynomials , 2018 .

[32]  V. Chvátal,et al.  Hypergraphs and Ramseyian theorems , 1971 .

[33]  Ioan Tomescu,et al.  Some Properties of Chromatic Coefficients of Linear Uniform Hypergraphs , 2009, Graphs Comb..

[34]  T. Helgason Aspects of the theory of hypermatroids , 1974 .

[35]  Thomas Zaslavsky,et al.  ON THE INTERPRETATION OF WHITNEY NUMBERS THROUGH ARRANGEMENTS OF HYPERPLANES, ZONOTOPES, NON-RADON PARTITIONS, AND ORIENTATIONS OF GRAPHS , 1983 .

[36]  Johann A. Makowsky,et al.  Computing Graph Polynomials on Graphs of Bounded Clique-Width , 2006, WG.

[37]  Julian A. Allagan Chromatic Polynomials Of Some (m, l)-Hyperwheels , 2014, Comput. Sci. J. Moldova.

[38]  Anne Verroust-Blondet,et al.  Results on hypergraph planarity , 2004 .

[39]  Alan D. Sokal,et al.  Chromatic Roots are Dense in the Whole Complex Plane , 2000, Combinatorics, Probability and Computing.

[40]  Lian-Chang Zhao,et al.  Cutpoints and the chromatic polynomial , 1984, J. Graph Theory.