Optimal Thermodynamics - New Upperbounds

This paper reviews how ideas have evolved in this field from the pioneering work of CARNOT right up to the present. The coupling of thermostatics with thermokinetics (heat and mass transfers) and entropy or exergy analysis is illustrated through study of thermomechanical engines such as the Carnot heat engine, and internal combustion engines. The benefits and importance of stagnation temperature and irreversibility parameters are underlined. The main situations of constrained (or unconstrained) optimization are defined, discussed and illustrated. The result of this study is a new branch of thermodynamics: Finite Dimensions Optimal Thermodynamics (FDOT).

[1]  Michel Feidt,et al.  Optimal use of energy systems and processes , 2008 .

[2]  D. Descieux,et al.  One zone thermodynamic model simulation of an ignition compression engine , 2007 .

[3]  Chih Wu,et al.  Finite-time thermodynamic analysis of a Carnot engine with internal irreversibility , 1992 .

[4]  Lingen Chen,et al.  Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems , 1999 .

[5]  Chih Wu,et al.  Finite-Time Thermodynamics and Endoreversible Heat Engines , 1993 .

[6]  I. I. Novikov The efficiency of atomic power stations (a review) , 1958 .

[7]  Daniel Tondeur,et al.  Equipartition of entropy production. An optimality criterion for transfer and separation processes , 1987 .

[8]  M. Feidt Thermodynamics and Optimization of Reverse Cycle Machines , 1999 .

[11]  M. Feidt,et al.  Comparaison entre le cycle simple de Brayton avec apport thermique imposé et avec contrainte de température maximale , 2006 .

[12]  Michel Feidt,et al.  Nouveaux critères pour l'optimisation et la caractérisation des procédés thermiques de conversion énergétique , 2005 .

[13]  John W. Mitchell,et al.  Optimum Heat Power Cycles for Specified Boundary Conditions , 1991 .

[14]  Bahri Sahin,et al.  Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics , 2004 .

[15]  M. Feidt,et al.  Conditions optimales de fonctionnement des pompes à chaleur ou machines à froid associées à un cycle de Carnot endoréversible , 1986 .

[16]  Carnot‐like processes in finite time. II. Applications to model cycles , 1993 .

[17]  J. Maury Carnot et la machine à vapeur , 1986 .

[18]  M. Feidt Advanced Thermodynamics of Reverse Cycle Machine , 2003 .

[19]  A. Bejan Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes , 1996 .

[20]  Michel Feidt,et al.  Optimization of the direct Carnot cycle , 2007 .

[21]  P. Chambadal,et al.  Évolution et applications du concept d'entropie , 1963 .

[22]  Peter Salamon,et al.  Finite time optimizations of a Newton’s law Carnot cycle , 1981 .

[23]  Bjarne Andresen,et al.  Thermodynamics in finite time. II. Potentials for finite-time processes , 1977 .

[24]  J. Gordon,et al.  General performance characteristics of real heat engines , 1992 .

[25]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[26]  Itamar Procaccia,et al.  On the efficiency of rate processes. Power and efficiency of heat engines , 1978 .

[27]  M. Feidt,et al.  Conception optimale de systèmes combinés à génération de puissance, chaleur et froid , 2002 .

[28]  B. Andresen,et al.  Thermodynamics in finite time: extremals for imperfect heat engines , 1977 .

[29]  Bjarne Andresen,et al.  On the Curzon–Ahlborn efficiency and its connection with the efficiencies of real heat engines , 2001 .