Indecomposable racks of order p^2

We classify indecomposable racks of order p^2 (p a prime). There are 2p^2 - 2p - 2 isomorphism classes, among which 2p^2 - 3p - 1 correspond to quandles. In particular, we prove that an indecomposable quandle of order p^2 is affine (=Alexander). One of the results yielding this classification is the computation of the quandle nonabelian second cohomology group of an indecomposable quandle of prime order; which turns out to be trivial, as in the abelian case.

[1]  M. Graña QUANDLE KNOT INVARIANTS ARE QUANTUM KNOT INVARIANTS , 2002 .

[2]  R. Litherland Quadratic quandles and their link invariants , 2002, math/0207099.

[3]  Nicolas Andruskiewitsch,et al.  From racks to pointed Hopf algebras , 2002, math/0202084.

[4]  P. Etingof,et al.  On rack cohomology , 2002, math/0201290.

[5]  R. Guralnick,et al.  Indecomposable Set-Theoretical Solutions to the Quantum Yang–Baxter Equation on a Set with a Prime Number of Elements , 2000, math/0007170.

[6]  M. Yan,et al.  On the set-theoretical Yang-Baxter equation , 2000 .

[7]  V. Turaev Homotopy field theory in dimension 3 and crossed group-categories , 2000, math/0005291.

[8]  Masahico Saito,et al.  State-sum invariants of knotted curves and surfaces from quandle cohomology , 1999 .

[9]  M. Yan,et al.  Quasi-triangular structures on Hopf algebras with positive bases , 1999, math/9911092.

[10]  P. Etingof,et al.  Set-theoretical solutions to the quantum Yang-Baxter equation , 1998, math/9801047.

[11]  P. Etingof,et al.  On set-theoretical solutions of the quantum Yang-Baxter equation , 1997, q-alg/9707027.

[12]  Roger Fenn,et al.  RACKS AND LINKS IN CODIMENSION TWO , 1992 .

[13]  S. Matveev DISTRIBUTIVE GROUPOIDS IN KNOT THEORY , 1984 .

[14]  Patrick Dehornoy,et al.  Braids and self-distributivity , 2000 .

[15]  Mat´ias Gra˜na,et al.  On Nichols Algebras of Low Dimension , 2000 .

[16]  E. Brieskorn,et al.  Automorphic sets and braids and singularities , 1988 .

[17]  David Joyce,et al.  A classifying invariant of knots, the knot quandle , 1982 .

[18]  G. M.,et al.  Theory of Groups of Finite Order , 1911, Nature.

[19]  W. Burnside,et al.  Theory of Groups of Finite Order , 1909 .