Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model

Abstract The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson’s disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion–induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN–MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion–induced changes to CTX–MSN D1, CTX–MSN D2, TA–MSN, and MSN–MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function.

[1]  Örjan Ekeberg,et al.  Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways , 2013, Front. Comput. Neurosci..

[2]  H. Kita,et al.  Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: response to subthalamic stimulation , 1991, Brain Research.

[3]  William M. Connelly,et al.  Differential Short-Term Plasticity at Convergent Inhibitory Synapses to the Substantia Nigra Pars Reticulata , 2010, The Journal of Neuroscience.

[4]  Anatol C. Kreitzer,et al.  Control of Basal Ganglia Output by Direct and Indirect Pathway Projection Neurons , 2013, The Journal of Neuroscience.

[5]  I. Bar-Gad,et al.  Spatial and Temporal Properties of Tic-Related Neuronal Activity in the Cortico-Basal Ganglia Loop , 2011, The Journal of Neuroscience.

[6]  G. Arbuthnott,et al.  Plasticity of striatopallidal terminals following unilateral lesion of the dopaminergic nigrostriatal pathway: a morphological study , 1997, Experimental Brain Research.

[7]  Izhar Bar-Gad,et al.  Loss of Specificity in Basal Ganglia Related Movement Disorders , 2011, Front. Syst. Neurosci..

[8]  Jérôme Baufreton,et al.  Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. , 2009, Journal of neurophysiology.

[9]  Michael S Okun,et al.  Lesion therapy for Parkinson's disease and other movement disorders: Update and controversies , 2004, Movement disorders : official journal of the Movement Disorder Society.

[10]  Jeffery R Wickens,et al.  Inhibitory interactions between spiny projection neurons in the rat striatum. , 2002, Journal of neurophysiology.

[11]  B. Sabatini,et al.  Globus Pallidus Externus Neurons Expressing parvalbumin Interconnect the Subthalamic Nucleus and Striatal Interneurons , 2016, PloS one.

[12]  D. A. Bergstrom,et al.  Phase relationships support a role for coordinated activity in the indirect pathway in organizing slow oscillations in basal ganglia output after loss of dopamine , 2007, Neuroscience.

[13]  Robert C. Malenka,et al.  Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models , 2007, Nature.

[14]  K. Deisseroth,et al.  Differential Modulation of Excitatory and Inhibitory Striatal Synaptic Transmission by Histamine , 2011, The Journal of Neuroscience.

[15]  Michael J. Frank,et al.  Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making , 2006, Neural Networks.

[16]  C. Eliasmith,et al.  Learning to Select Actions with Spiking Neurons in the Basal Ganglia , 2012, Front. Neurosci..

[17]  Charles J. Wilson,et al.  Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. , 1994, Journal of neurophysiology.

[18]  D. Jaeger,et al.  Short-Term Plasticity Shapes the Response to Simulated Normal and Parkinsonian Input Patterns in the Globus Pallidus , 2002, The Journal of Neuroscience.

[19]  M. Bevan,et al.  Ionic Mechanisms Underlying Autonomous Action Potential Generation in the Somata and Dendrites of GABAergic Substantia Nigra Pars Reticulata Neurons In Vitro , 2005, The Journal of Neuroscience.

[20]  O. Hornykiewicz Dopamine (3-hydroxytyramine) and brain function. , 1966, Pharmacological reviews.

[21]  H. Bergman,et al.  Dynamic and spatial features of the inhibitory pallidal GABAergic synapses , 2005, Neuroscience.

[22]  J. Walters,et al.  The Response of Subthalamic Nucleus Neurons to Dopamine Receptor Stimulation in a Rodent Model of Parkinson’s Disease , 1997, The Journal of Neuroscience.

[23]  C. Lopez,et al.  Subthalamic nucleus evokes similar long lasting glutamatergic excitations in pallidal, entopeduncular and nigral neurons in the basal ganglia slice , 2010, Neuroscience.

[24]  H. Markram,et al.  Information Processing with Frequency-Dependent Synaptic Connections , 1998, Neurobiology of Learning and Memory.

[25]  Michael J. Frank,et al.  Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism , 2005, Journal of Cognitive Neuroscience.

[26]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[27]  D James Surmeier,et al.  Recurrent Collateral Connections of Striatal Medium Spiny Neurons Are Disrupted in Models of Parkinson's Disease , 2008, The Journal of Neuroscience.

[28]  Scott J Barton,et al.  Dysregulated information processing by medium spiny neurons in striatum of freely behaving mouse models of Huntington's disease. , 2008, Journal of neurophysiology.

[29]  Charles J. Wilson,et al.  Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. , 1994, Journal of neurophysiology.

[30]  J. Mink THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS , 1996, Progress in Neurobiology.

[31]  J. Bolam,et al.  Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus–globus pallidus network , 2001, Neuroscience.

[32]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Houk,et al.  Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. , 2003, Journal of neurophysiology.

[34]  Lynn P. Martin,et al.  Subthalamic nucleus lesions alter basal and dopamine agonist stimulated electrophysiological output from the rat basal ganglia , 2004, Synapse.

[35]  Kuei Yuan Tseng,et al.  Handbook of basal ganglia structure and function , 2010 .

[36]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[37]  T. Robbins,et al.  Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. , 2008, Cerebral cortex.

[38]  Kenji F. Tanaka,et al.  Functional Connectome of the Striatal Medium Spiny Neuron , 2011, The Journal of Neuroscience.

[39]  J. Houk,et al.  Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. , 1998, Journal of neurophysiology.

[40]  Markus Diesmann,et al.  An Imperfect Dopaminergic Error Signal Can Drive Temporal-Difference Learning , 2011, PLoS Comput. Biol..

[41]  C. Cepeda,et al.  Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Nambu Seven problems on the basal ganglia , 2008, Current Opinion in Neurobiology.

[43]  I. Stanford,et al.  Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro , 2000, The Journal of physiology.

[44]  C. Cepeda,et al.  Modulation of AMPA currents by D2 dopamine receptors in striatal medium‐sized spiny neurons: are dendrites necessary? , 2004, The European journal of neuroscience.

[45]  Marc-Oliver Gewaltig,et al.  NEST (NEural Simulation Tool) , 2007, Scholarpedia.

[46]  H. C. Cromwell,et al.  Neuromodulatory actions of dopamine on synaptically‐evoked neostriatal responses in slices , 1996 .

[47]  Peter Redgrave,et al.  A computational model of action selection in the basal ganglia. I. A new functional anatomy , 2001, Biological Cybernetics.

[48]  S. T. Kitai,et al.  Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat , 1997, Neuroscience.

[49]  Henk J Groenewegen,et al.  Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ. , 2004, Journal of neurophysiology.

[50]  Minmin Luo,et al.  Npas1+ Pallidal Neurons Target Striatal Projection Neurons , 2016, The Journal of Neuroscience.

[51]  C. Wilson,et al.  Mechanisms Underlying Spontaneous Oscillation and Rhythmic Firing in Rat Subthalamic Neurons , 1999, The Journal of Neuroscience.

[52]  Jean Féger,et al.  The Effects of Activation or Inhibition of the Subthalamic Nucleus on the Metabolic and Electrophysiological Activities Within the Pallidal Complex and Substantia Nigra in the Rat , 1991, The European journal of neuroscience.

[53]  Charles J. Wilson,et al.  GABAergic microcircuits in the neostriatum , 2004, Trends in Neurosciences.

[54]  Jonathan E Rubin,et al.  Pallidostriatal Projections Promote β Oscillations in a Dopamine-Depleted Biophysical Network Model , 2016, The Journal of Neuroscience.

[55]  Erwan Bezard,et al.  Altered pallido‐pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson's disease , 2012, The Journal of physiology.

[56]  Eugene M Izhikevich,et al.  Hybrid spiking models , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[57]  M. M. Morrow,et al.  New Roles for the External Globus Pallidus in Basal Ganglia Circuits and Behavior , 2014, The Journal of Neuroscience.

[58]  I. M. Stanford,et al.  Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABAA IPSCs in vitro , 2001, Neuropharmacology.

[59]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[60]  Enrico Bracci,et al.  Dopamine excites fast-spiking interneurons in the striatum. , 2002, Journal of neurophysiology.

[61]  Izhar Bar-Gad,et al.  The neurophysiological correlates of motor tics following focal striatal disinhibition. , 2009, Brain : a journal of neurology.

[62]  H. Eichenbaum,et al.  Oscillatory Entrainment of Striatal Neurons in Freely Moving Rats , 2004, Neuron.

[63]  J. Deniau,et al.  Spontaneous and Evoked Activity of Substantia Nigra Pars Reticulata Neurons during High-Frequency Stimulation of the Subthalamic Nucleus , 2003, The Journal of Neuroscience.

[64]  Mark D. Humphries,et al.  Frontiers in Computational Neuroscience , 2022 .

[65]  Jérôme Baufreton,et al.  D2‐like dopamine receptor‐mediated modulation of activity‐dependent plasticity at GABAergic synapses in the subthalamic nucleus , 2008, The Journal of physiology.

[66]  F. Zhou,et al.  An Ultra-Short Dopamine Pathway Regulates Basal Ganglia Output , 2009, The Journal of Neuroscience.

[67]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[68]  Peter Brown,et al.  Parkinsonian Beta Oscillations in the External Globus Pallidus and Their Relationship with Subthalamic Nucleus Activity , 2008, The Journal of Neuroscience.

[69]  K. Gurney,et al.  A Physiologically Plausible Model of Action Selection and Oscillatory Activity in the Basal Ganglia , 2006, The Journal of Neuroscience.

[70]  P. Redgrave,et al.  The basal ganglia: a vertebrate solution to the selection problem? , 1999, Neuroscience.

[71]  Charles R. Gerfen,et al.  The Neuroanatomical Organization of the Basal Ganglia , 2010 .

[72]  J. Bolam,et al.  A Single-Cell Analysis of Intrinsic Connectivity in the Rat Globus Pallidus , 2007, The Journal of Neuroscience.

[73]  Henry Markram,et al.  Neural Networks with Dynamic Synapses , 1998, Neural Computation.

[74]  S. Johnson,et al.  Subthalamic stimulation evokes complex EPSCs in the rat substantia nigra pars reticulata in vitro , 2006, The Journal of physiology.

[75]  Ö. Ekeberg,et al.  The Arbitration–Extension Hypothesis: A Hierarchical Interpretation of the Functional Organization of the Basal Ganglia , 2011, Front. Syst. Neurosci..

[76]  Wolfgang Löscher,et al.  Subregional changes in discharge rate, pattern, and drug sensitivity of putative GABAergic nigral neurons in the kindling model of epilepsy , 2004, The European journal of neuroscience.

[77]  Charles J. Wilson,et al.  Dynamic Spike Threshold and Zero Membrane Slope Conductance Shape the Response of Subthalamic Neurons to Cortical Input , 2010, The Journal of Neuroscience.

[78]  D. Surmeier,et al.  Dichotomous Anatomical Properties of Adult Striatal Medium Spiny Neurons , 2008, The Journal of Neuroscience.

[79]  Anatol C. Kreitzer,et al.  Interplay between Facilitation, Depression, and Residual Calcium at Three Presynaptic Terminals , 2000, The Journal of Neuroscience.

[80]  Charles J. Wilson,et al.  Activity Patterns in a Model for the Subthalamopallidal Network of the Basal Ganglia , 2002, The Journal of Neuroscience.

[81]  J. Penney,et al.  The globus pallidus receives a projection from the parafascicular nucleus in the rat , 1991, Brain Research.

[82]  T. Robbins,et al.  Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. , 2003, Behavioral neuroscience.

[83]  S. Johnson,et al.  Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro , 2000, The Journal of physiology.

[84]  Kim T Blackwell,et al.  Desynchronization of Fast-Spiking Interneurons Reduces β-Band Oscillations and Imbalance in Firing in the Dopamine-Depleted Striatum , 2015, The Journal of Neuroscience.

[85]  J. Wickens Basal ganglia: structure and computations. , 1997 .

[86]  Henrike Planert,et al.  Dynamics of Synaptic Transmission between Fast-Spiking Interneurons and Striatal Projection Neurons of the Direct and Indirect Pathways , 2010, The Journal of Neuroscience.

[87]  J. Bolam,et al.  Selective Innervation of Neostriatal Interneurons by a Subclass of Neuron in the Globus Pallidus of the Rat , 1998, The Journal of Neuroscience.

[88]  C. Wilson,et al.  Equilibrium potential of GABA(A) current and implications for rebound burst firing in rat subthalamic neurons in vitro. , 2000, Journal of neurophysiology.

[89]  E. Vaadia,et al.  Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates , 1998, Trends in Neurosciences.

[90]  Pavel Osten,et al.  HCN Channelopathy in External Globus Pallidus Neurons in Models of Parkinson’s Disease , 2010, Nature Neuroscience.

[91]  Charles J. Wilson,et al.  The generation of natural firing patterns in neostriatal neurons. , 1993, Progress in brain research.

[92]  H. Kita,et al.  Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat , 1993, Brain Research.

[93]  I. Stanford,et al.  Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA(A) IPSCs in vitro. , 2001, Neuropharmacology.

[94]  T. Kita,et al.  Rat intralaminar thalamic nuclei projections to the globus pallidus: A biotinylated dextran amine anterograde tracing study , 2004, The Journal of comparative neurology.

[95]  H. Kita,et al.  Functional connectivity and integrative properties of globus pallidus neurons , 2011, Neuroscience.

[96]  J. Tepper,et al.  Inhibitory control of neostriatal projection neurons by GABAergic interneurons , 1999, Nature Neuroscience.

[97]  Daniel K. Leventhal,et al.  Arkypallidal Cells Send a Stop Signal to Striatum , 2016, Neuron.

[98]  Henrike Planert,et al.  Membrane Properties of Striatal Direct and Indirect Pathway Neurons in Mouse and Rat Slices and Their Modulation by Dopamine , 2013, PloS one.

[99]  Charles J. Wilson,et al.  Apamin-Sensitive Small Conductance Calcium-Activated Potassium Channels, through their Selective Coupling to Voltage-Gated Calcium Channels, Are Critical Determinants of the Precision, Pace, and Pattern of Action Potential Generation in Rat Subthalamic Nucleus Neurons In Vitro , 2003, The Journal of Neuroscience.

[100]  Alon Korngreen,et al.  Electrophysiological Characteristics of Globus Pallidus Neurons , 2010, PloS one.

[101]  Marc-Oliver Gewaltig,et al.  NEST (NEural Simulation Tool) , 2007, Scholarpedia.

[102]  D. Oorschot Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods , 1996, The Journal of comparative neurology.

[103]  Dagoberto Tapia,et al.  Control of the subthalamic innervation of substantia nigra pars reticulata by D1 and D2 dopamine receptors. , 2006, Journal of neurophysiology.

[104]  Arvind Kumar,et al.  The High-Conductance State of Cortical Networks , 2008, Neural Computation.

[105]  M R Park,et al.  An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopic analysis , 1982, The Journal of comparative neurology.

[106]  Charles J. Wilson,et al.  Comparison of IPSCs Evoked by Spiny and Fast-Spiking Neurons in the Neostriatum , 2004, The Journal of Neuroscience.

[107]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[108]  John A Wolf,et al.  Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. , 2007, Journal of neurophysiology.

[109]  A. Lansner,et al.  Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity , 2016, Front. Neural Circuits.

[110]  Henrike Planert,et al.  Striatal Fast-Spiking Interneurons: From Firing Patterns to Postsynaptic Impact , 2011, Front. Syst. Neurosci..

[111]  Steven Finkbeiner,et al.  Rapid Target-Specific Remodeling of Fast-Spiking Inhibitory Circuits after Loss of Dopamine , 2011, Neuron.

[112]  Alexander B. Wiltschko,et al.  Selective Activation of Striatal Fast-Spiking Interneurons during Choice Execution , 2010, Neuron.

[113]  Gavin L. Woodhall,et al.  Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro , 2008, The European journal of neuroscience.

[114]  A M Amjad,et al.  A framework for the analysis of mixed time series/point process data--theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. , 1995, Progress in biophysics and molecular biology.

[115]  Albert Compte,et al.  Integrated Mechanisms of Anticipation and Rate-of-Change Computations in Cortical Circuits , 2007, PLoS Comput. Biol..

[116]  Kim T Blackwell,et al.  Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. , 2014, Journal of neurophysiology.

[117]  R. Llinás,et al.  Electrophysiology of globus pallidus neurons in vitro. , 1994, Journal of neurophysiology.

[118]  Stefan Rotter,et al.  The Role of Inhibition in Generating and Controlling Parkinson’s Disease Oscillations in the Basal Ganglia , 2011, Front. Syst. Neurosci..

[119]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[120]  KouichiC . Nakamura,et al.  Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus , 2015, The Journal of Neuroscience.

[121]  R. Bogacz,et al.  Effective connectivity of the subthalamic nucleus–globus pallidus network during Parkinsonian oscillations , 2014, The Journal of physiology.

[122]  H. C. Cromwell,et al.  Neuromodulatory actions of dopamine on synaptically‐evoked neostriatal responses in slices , 1996, Synapse.

[123]  P. Calabresi,et al.  Dopamine, Acetylcholine and Nitric Oxide Systems Interact to Induce Corticostriatal Synaptic Plasticity , 2003, Reviews in the neurosciences.

[124]  Dagoberto Tapia,et al.  Control of the subthalamic innervation of the rat globus pallidus by D2/3 and D4 dopamine receptors. , 2006, Journal of neurophysiology.

[125]  KouichiC . Nakamura,et al.  Dichotomous Organization of the External Globus Pallidus , 2012, Neuron.

[126]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[127]  Peter Redgrave,et al.  A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour , 2001, Biological Cybernetics.

[128]  M. Deschenes,et al.  A Single‐cell Study of the Axonal Projections Arising from the Posterior Intralaminar Thalamic Nuclei in the Rat , 1996, The European journal of neuroscience.

[129]  Jeffery R Wickens,et al.  Simulation of GABA function in the basal ganglia: computational models of GABAergic mechanisms in basal ganglia function. , 2007, Progress in brain research.

[130]  A. Neurocytology,et al.  GABAergic Interneurons of the Striatum , 2016 .

[131]  Daniel K. Leventhal,et al.  Canceling actions involves a race between basal ganglia pathways , 2013, Nature Neuroscience.

[132]  O. Hobert,et al.  New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. , 2003, Annual review of neuroscience.

[133]  H. Kita,et al.  The morphology of globus pallidus projection neurons in the rat: an intracellular staining study , 1994, Brain Research.

[134]  D James Surmeier,et al.  Enhancement of Excitatory Synaptic Integration by GABAergic Inhibition in the Subthalamic Nucleus , 2005, The Journal of Neuroscience.

[135]  P. Gatev,et al.  Oscillations in the basal ganglia under normal conditions and in movement disorders , 2006, Movement disorders : official journal of the Movement Disorder Society.

[136]  Anatol C. Kreitzer,et al.  Distinct Roles of GABAergic Interneurons in the Regulation of Striatal Output Pathways , 2010, The Journal of Neuroscience.

[137]  Mark D. Humphries,et al.  Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit , 2009, Neural Networks.

[138]  H. Kita,et al.  Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation , 1987, Brain Research.

[139]  D. Willshaw,et al.  A massively connected subthalamic nucleus leads to the generation of widespread pulses , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.