Review of Water-Assisted Crystallization for TiO2 Nanotubes

TiO2 nanotubes (TNTs) have drawn tremendous attention owing to their unique architectural and physical properties. Anodizing of titanium foil has proven to be the most efficient method to fabricate well-aligned TNTs, which, however, usually produces amorphous TNTs and needs further thermal annealing. Recently, a water-assisted crystallization strategy has been proposed and investigated by both science and engineering communities. This method is very efficient and energy saving, and it circumvents the drawbacks of thermal sintering approach. In this paper, we review the recent research progress in this kind of low-temperature crystallization approach. Here, various synthetic methods are summarized, and the mechanisms of the amorphous–crystalline transformation are analyzed. The fundamental properties and applications of the low-temperature products are also discussed. Furthermore, it is proved that the water-assisted crystallization approach is not only applicable to TNTs but also to crystallizing other metal oxides.

[1]  W. D. Phillips,et al.  Synthetic analogs of the active sites of iron-sulfur proteins. V. Proton resonance properties of the tetranuclear clusters [tetra-.mu.-sulfido-tetrakis(alkyl or aryl thiolato)tetraferrate](2-) , 1974 .

[2]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[3]  Y. Chéron,et al.  Design and Applications , 1992 .

[4]  H. Imai,et al.  Direct preparation of anatase TiO2 nanotubes in porous alumina membranes , 1999 .

[5]  Jincai Zhao,et al.  Visible light-sensitized semiconductor photocatalytic degradation of 2,4-dichlorophenol , 2002 .

[6]  T. Hufnagel Finding order in disorder , 2004, Nature materials.

[7]  M. Miyauchi,et al.  N-doped TiO2 Nanotube with Visible Light Activity , 2004 .

[8]  Heon-Cheol Shin,et al.  Porous Tin Oxides Prepared Using an Anodic Oxidation Process , 2004 .

[9]  Fumin Wang,et al.  Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. , 2004, Journal of the American Chemical Society.

[10]  Xue-qing Gong,et al.  Reactivity of anatase TiO(2) nanoparticles: the role of the minority (001) surface. , 2005, The journal of physical chemistry. B.

[11]  Balasubramanian Viswanathan,et al.  Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst , 2005 .

[12]  D. Y. Kim,et al.  Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. , 2006, Nano letters.

[13]  C. Grimes,et al.  An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties , 2006 .

[14]  J. Macák,et al.  Smooth anodic TiO2 nanotubes: annealing and structure , 2006 .

[15]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[16]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[17]  Jae-Hun Yang,et al.  TiO2 thin-films on polymer substrates and their photocatalytic activity , 2006 .

[18]  E. Suh,et al.  TiO2 thin film gas sensor for monitoring ammonia , 2007 .

[19]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[20]  Zhifeng Liu,et al.  Fabrication of TiO2 nanotube film by well-aligned ZnO nanorod array film and sol–gel process , 2007 .

[21]  Craig A. Grimes,et al.  TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil: Phenol Red Diffusion , 2007 .

[22]  G. Shi,et al.  Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation. , 2007, Environmental science & technology.

[23]  B. Dong,et al.  Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery , 2007 .

[24]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[25]  V. Dutta,et al.  Low-temperature synthesis of TiO2 nanoparticles and preparation of TiO2 thin films by spray deposition , 2007 .

[26]  A. J. Frank,et al.  Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. , 2007, Nano letters.

[27]  S. Yoshikawa,et al.  Direct synthesis of an anatase‐TiO2 nanofiber/nanoparticle composite powder from natural rutile , 2007 .

[28]  Z. Zou,et al.  Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 , 2007 .

[29]  Baibiao Huang,et al.  Study of the Nitrogen Concentration Influence on N-Doped TiO2Anatase from First-Principles Calculations , 2007 .

[30]  J. Banfield,et al.  Phase Stability and Transformation in Titania Nanoparticles in Aqueous Solutions Dominated by Surface Energy , 2007 .

[31]  Patrik Schmuki,et al.  Self-organized TiO2 nanotube layers as highly efficient photocatalysts. , 2007, Small.

[32]  Hidetoshi Miura,et al.  Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. , 2008, ACS nano.

[33]  TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area , 2008 .

[34]  E. Aydil,et al.  Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells , 2008, Nanotechnology.

[35]  Nageh K. Allam,et al.  A General Method for the Anodic Formation of Crystalline Metal Oxide Nanotube Arrays without the Use of Thermal Annealing , 2008 .

[36]  P. Schmuki,et al.  Dye-sensitized solar cells based on thick highly ordered TiO2 nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media , 2008, Nanotechnology.

[37]  Alison B. Walker,et al.  Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. , 2008, Journal of the American Chemical Society.

[38]  Taeghwan Hyeon,et al.  Nanorod‐Based Dye‐Sensitized Solar Cells with Improved Charge Collection Efficiency , 2008 .

[39]  P. Schmuki,et al.  Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[40]  J. Macák,et al.  Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles , 2008 .

[41]  Zhiqun Lin,et al.  Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization , 2008 .

[42]  E. Diau,et al.  Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells , 2008 .

[43]  Qing Chen,et al.  CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. , 2008, Journal of the American Chemical Society.

[44]  Ana P. Carvalho,et al.  Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity , 2008 .

[45]  P. Schmuki,et al.  Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. , 2008, Angewandte Chemie.

[46]  Akira Fujishima,et al.  Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol , 2008 .

[47]  Dongsheng Xu,et al.  Large-Scale, Noncurling, and Free-Standing Crystallized TiO2 Nanotube Arrays for Dye-Sensitized Solar Cells , 2009 .

[48]  Wei-min Liu,et al.  A Novel Protocol Toward Perfect Alignment of Anodized TiO2 Nanotubes , 2009 .

[49]  Xiwen Zhang,et al.  Fabrication and photocatalytic activity of TiO2 nanofiber membrane , 2009 .

[50]  Hai-chao Liang,et al.  Effects of structure of anodic TiO(2) nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. , 2009, Journal of hazardous materials.

[51]  Z. Lockman,et al.  Photoactivity of anatase–rutile TiO2 nanotubes formed by anodization method , 2009 .

[52]  TiO 2 nanotubes and their application in dye-sensitized solar cells , 2009 .

[53]  P. Chu,et al.  Bioactive SrTiO(3) nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants. , 2009, ACS nano.

[54]  S. Bauer,et al.  Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. , 2009, Journal of the American Chemical Society.

[55]  P. Xiao,et al.  Preparation of Ni nanoparticle–TiO2 nanotube composite by pulse electrodeposition , 2009 .

[56]  Yangxuan Xiao,et al.  TiO2‐Coated Multilayered SnO2 Hollow Microspheres for Dye‐Sensitized Solar Cells , 2009 .

[57]  P. Schmuki,et al.  Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles , 2009 .

[58]  Porun Liu,et al.  An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells , 2009 .

[59]  P. Schmuki,et al.  Dye-sensitized solar cells using anodic TiO2 mesosponge: Improved efficiency by TiCl4 treatment , 2010 .

[60]  Shengyou Huang,et al.  Preparation of Fe-doped TiO{sub 2} nanotube arrays and their photocatalytic activities under visible light , 2010 .

[61]  Il-Doo Kim,et al.  Pd-doped TiO2 nanofiber networks for gas sensor applications , 2010 .

[62]  Patrik Schmuki,et al.  TiO2 nanotubes and their application in dye-sensitized solar cells. , 2010, Nanoscale.

[63]  Mano Misra,et al.  Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. , 2010, ACS nano.

[64]  Jiaguo Yu,et al.  Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays , 2010 .

[65]  Y. Lai,et al.  Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. , 2010, Journal of hazardous materials.

[66]  C. Grimes,et al.  Self-assembled TiO(2) nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[67]  W. Zhang,et al.  Diameter‐Dependent Photocatalytic Activity of Electrospun TiO2 Nanofiber , 2010 .

[68]  Jing Wang,et al.  Ordered Crystalline TiO2 Nanotube Arrays on Transparent FTO Glass for Efficient Dye-Sensitized Solar Cells , 2010 .

[69]  Samir Elouatik,et al.  Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[70]  Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. , 2010, Journal of nanoscience and nanotechnology.

[71]  Zhiqun Lin,et al.  Dye-Sensitized TiO2 Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering , 2010 .

[72]  Yinong Liu,et al.  Preparation of nanoporous tin oxide by electrochemical anodization in alkaline electrolytes , 2011 .

[73]  S. Stupp,et al.  Patterning of periodic high-aspect-ratio nanopores in anatase titanium dioxide from titanium fluoride hydrolysis. , 2011, Nanoscale.

[74]  P. Schmuki,et al.  Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: A refreshable platform for methanol electrooxidation , 2011 .

[75]  H. Fu,et al.  Well‐Ordered Large‐Pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance , 2011 .

[76]  Sheikh A. Akbar,et al.  A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays , 2011 .

[77]  C. Grimes,et al.  Fabrication of PbS nanoparticle-sensitized TiO₂ nanotube arrays and their photoelectrochemical properties. , 2011, ACS applied materials & interfaces.

[78]  S. G. Kumar,et al.  Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. , 2011, The journal of physical chemistry. A.

[79]  Hamid Garmestani,et al.  Electrochemical Fabrication of Strontium-Doped TiO2 Nanotube Array Electrodes and Investigation of Their Photoelectrochemical Properties , 2011 .

[80]  W. W. Leung,et al.  Application of a Bilayer TiO2 Nanofiber Photoanode for Optimization of Dye‐Sensitized Solar Cells , 2011, Advanced materials.

[81]  K. Domen,et al.  Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature. , 2011, Nano letters.

[82]  Xiaowei Zhao,et al.  Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. , 2011, Journal of the American Chemical Society.

[83]  Xinyong Li,et al.  Photocatalytic degradation of gaseous toluene over Ag-doping TiO₂ nanotube powder prepared by anodization coupled with impregnation method. , 2011, Chemosphere.

[84]  Woo-Sung Choi,et al.  Well-defined meso- to macro-porous film of tin oxides formed by an anodization process , 2011 .

[85]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[86]  Yucheng He,et al.  A facile method to crystallize amorphous anodized TiO₂ nanotubes at low temperature. , 2011, ACS applied materials & interfaces.

[87]  Xiwang Zhang,et al.  Adsorption and photocatalytic degradation of Acid Orange 7 over hydrothermally synthesized mesoporous TiO2 nanotube , 2011 .

[88]  Xue Chen,et al.  Facile synthesis and electrochemical characterization of porous and dense TiO2 nanospheres for lithium-ion battery applications , 2011 .

[89]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[90]  Zhiqun Lin,et al.  Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization , 2011, Nanotechnology.

[91]  Charles C. Sorrell,et al.  Review of the anatase to rutile phase transformation , 2011 .

[92]  Ying Wang,et al.  Facile Synthesis and Morphology Control of Bamboo-Type TiO2 Nanotube Arrays for High-Efficiency Dye-Sensitized Solar Cells , 2012 .

[93]  A. K. Tyagi,et al.  Enhanced Field Emission Properties of Electrochemically Synthesized Self-Aligned Nitrogen-Doped TiO2 Nanotube Array Thin Films , 2012 .

[94]  Nathan T. Hahn,et al.  Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. , 2012, Journal of the American Chemical Society.

[95]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[96]  Yue Cao,et al.  Heterostructured TiO2 Nanoparticles/Nanotube Arrays: In Situ Formation from Amorphous TiO2 Nanotube Arrays in Water and Enhanced Photocatalytic Activity , 2012 .

[97]  Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. , 2012, Nanoscale.

[98]  C. Moseke,et al.  TiO2 nanotube arrays deposited on Ti substrate by anodic oxidation and their potential as a long-term drug delivery system for antimicrobial agents , 2012 .

[99]  P. Schmuki,et al.  Water annealing and other low temperature treatments of anodic TiO2 nanotubes: A comparison of properties and efficiencies in dye sensitized solar cells and for water splitting , 2012 .

[100]  W. Lu,et al.  A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells. , 2012, Nanoscale.

[101]  A. Fujishima,et al.  TiO2 photocatalysis: Design and applications , 2012 .

[102]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[103]  Shih‐Yuan Lu,et al.  One-Step, Surfactant-Free Hydrothermal Method for Syntheses of Mesoporous TiO2 Nanoparticle Aggregates and Their Applications in High Efficiency Dye-Sensitized Solar Cells , 2012 .

[104]  Heterostructured TiO 2 Nanoparticles / Nanotube Arrays : In Situ Formation from Amorphous TiO 2 Nanotube Arrays in Water and Enhanced Photocatalytic Activity , 2012 .

[105]  Hui Wu,et al.  Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment , 2013, Nanotechnology.

[106]  A. Matsuda,et al.  Low-temperature crystallization of TiO2 nanotube arrays via hot water treatment and their photocatalytic properties under visible-light irradiation , 2013 .

[107]  H. Fuchs,et al.  Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications. , 2013, Small.

[108]  Yulong Liao,et al.  Photocatalytic generation of multiple ROS types using low-temperature crystallized anodic TiO₂ nanotube arrays. , 2013, Journal of hazardous materials.

[109]  Y. Kang,et al.  Formation of a crystalline nanotube-nanoparticle hybrid by post water-treatment of a thin amorphous TiO2 layer on a TiO2 nanotube array as an efficient photoanode in dye-sensitized solar cells , 2013 .

[110]  Peng Wang,et al.  Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. , 2013, Nano letters.

[111]  C. Bowen,et al.  A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes , 2013 .

[112]  Z. Su,et al.  Formation of crystalline TiO2 by anodic oxidation of titanium , 2013 .

[113]  Lei Jiang,et al.  Low-temperature crystallization of anodized TiO2 nanotubes at the solid-gas interface and their photoelectrochemical properties. , 2013, Nanoscale.

[114]  Jijiang Fu,et al.  A composite electrode of TiO2 nanotubes and nanoparticles synthesised by hydrothermal treatment for use in dye-sensitized solar cells , 2013 .

[115]  P. Schmuki,et al.  TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications , 2013 .

[116]  Jin-Ming Wu,et al.  Low‐Temperature Transformation of Titania Thin Films from Amorphous Nanowires to Crystallized Nanoflowers for Heterogeneous Photocatalysis , 2013 .

[117]  Guodong Li,et al.  Room-temperature spontaneous crystallization of porous amorphous titania into a high-surface-area anatase photocatalyst. , 2013, Chemical communications.

[118]  J. Lang,et al.  One-pot growth of free-standing CNTs/TiO2 nanofiber membrane for enhanced photocatalysis , 2013 .

[119]  Lingzhou Zhao,et al.  Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. , 2013, Biomaterials.

[120]  F. Zaera,et al.  Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications , 2013 .

[121]  J. Archana,et al.  Solvothermal growth of high surface area mesoporous anatase TiO2 nanospheres and investigation of dye-sensitized solar cell properties , 2013 .

[122]  Binbin Chang,et al.  Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism , 2013 .

[123]  Hydrothermal synthesis of perovskite-type MTiO3 (M = Zn, Co, Ni)/TiO2 nanotube arrays from an amorphous TiO2 template , 2014 .

[124]  Shaoyu Zhang,et al.  Facile method to enhance the adhesion of TiO₂ nanotube arrays to Ti substrate. , 2014, ACS applied materials & interfaces.

[125]  Huey-Jiuan Lin,et al.  Structural and photodegradation behaviors of Fe3+-doping TiO2 thin films prepared by a sol–gel spin coating , 2014 .

[126]  Jinli Zhang,et al.  A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications , 2014 .

[127]  W. Lu,et al.  Aligned TiO2 nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries , 2014, Nanotechnology.

[128]  Jiaguo Yu,et al.  New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. , 2014, Physical chemistry chemical physics : PCCP.

[129]  Karine Assaker,et al.  Water-Catalyzed Low-Temperature Transformation from Amorphous to Semi-Crystalline Phase of Ordered Mesoporous Titania Framework , 2014 .

[130]  Hui Wu,et al.  High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach , 2014 .

[131]  F. Sanz,et al.  Growth of ordered anodic SnO2 nanochannel layers and their use for H2 gas sensing , 2014 .

[132]  Somnath C. Roy,et al.  Water assisted crystallization, gas sensing and photo-electrochemical properties of electrochemically synthesized TiO2 nanotube arrays , 2014 .

[133]  P. Schmuki,et al.  One-dimensional titanium dioxide nanomaterials: nanotubes. , 2014, Chemical Reviews.

[134]  He Zhou,et al.  Electrochemically Self-Doped TiO2 Nanotube Arrays for Supercapacitors , 2014 .

[135]  M. Hamadanian,et al.  Improved Conversion Efficiency in Dye-Sensitized Solar Cells Based on Electrospun TiCl4-Treated TiO2 Nanorod Electrodes , 2014 .

[136]  Xianhua Hou,et al.  Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its photocatalytic effect , 2014 .

[137]  B. D. Malhotra,et al.  Highly sensitive biofunctionalized mesoporous electrospun TiO(2) nanofiber based interface for biosensing. , 2014, ACS applied materials & interfaces.

[138]  Xianhua Hou,et al.  Low-temperature ammonia annealed TiO2 nanotube arrays: Synergy of morphology improvement and nitrogen doping for enhanced field emission , 2014 .

[139]  K. Zhou,et al.  Surface morphology, phase structure and property evolution of anodized titanium during water vapor exposure , 2015 .

[140]  Christopher G. England,et al.  HaloTag Technology: A Versatile Platform for Biomedical Applications , 2015, Bioconjugate chemistry.

[141]  M. Grimm,et al.  Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water , 2015 .

[142]  Le Shi,et al.  A facile method to prepare mesoporous anatase TiO2 materials in water at lower temperatures , 2015 .

[143]  Cuiping Li,et al.  Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors , 2015 .

[144]  S. Bianco,et al.  Ultrafast Room-Temperature Crystallization of TiO2 Nanotubes Exploiting Water-Vapor Treatment , 2015, Scientific Reports.

[145]  R. Adelung,et al.  Three‐Dimensional SnO2 Nanowire Networks for Multifunctional Applications: From High‐Temperature Stretchable Ceramics to Ultraresponsive Sensors , 2015 .

[146]  D. Zhao,et al.  Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes. , 2015, Journal of the American Chemical Society.

[147]  T. Zeng,et al.  Highly crystalline Titania nanotube arrays realized by hydrothermal vapor route and used as front-illuminated photoanode in dye sensitized solar cells , 2015 .

[148]  Yong Li,et al.  Recyclable Non-Enzymatic Glucose Sensor Based on Ni/NiTiO3 /TiO2 Nanotube Arrays. , 2015, ChemPlusChem.

[149]  C. Liang,et al.  Simultaneous Cu doping and growth of TiO2 nanocrystalline array film as a glucose biosensor , 2016 .

[150]  Zhenda Lu,et al.  Water-assisted crystallization of mesoporous anatase TiO2 nanospheres. , 2016, Nanoscale.

[151]  Xiaoyi Wang,et al.  New Mechanistic Insight of Low Temperature Crystallization of Anodic TiO2 Nanotube Array in Water , 2016 .

[152]  Jun Yan,et al.  Stability of titania nanotube arrays in aqueous environment and the related factors , 2016, Scientific Reports.

[153]  P. Chu,et al.  Self‐Supporting and Binder‐Free Anode Film Composed of Beaded Stream‐Like Li4Ti5O12 Nanoparticles for High‐Performance Lithium‐Ion Batteries , 2016 .

[154]  A novel sol-gel method for preparing favorable TiO2 thin film , 2016 .

[155]  Shi-xiu Cao,et al.  Amorphous TiO 2 nanotube-derived synthesis of highly ordered anatase TiO 2 nanorod arrays , 2016 .

[156]  Wenjun Zhang,et al.  Water-enabled crystallization of mesoporous SnO2 as a binder-free electrode for enhanced sodium storage , 2017 .

[157]  Wei Wen,et al.  Room‐Temperature Hydrolysis of Potassium Titanyl Oxalate and Water‐Assisted Crystallization for TiO2 with High Photocatalytic Activity , 2017 .

[158]  Highly ordered Ag–TiO2 nanocomposited arrays with high visible-light photocatalytic activity , 2017, Frontiers of Materials Science.

[159]  Shaoyu Zhang,et al.  TiO2 nanotube arrays treated with (NH4)2TiF6 dilute solution for better supercapacitive performances , 2017 .

[160]  J. Jang,et al.  Fabrication of A/R-TiO 2 composite for enhanced photoelectrochemical performance: Solar hydrogen generation and dye degradation , 2017 .

[161]  S. Hannula,et al.  Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes , 2017 .

[162]  Ye Song,et al.  Hydrothermal solid-gas route to TiO 2 nanoparticles/nanotube arrays for high-performance supercapacitors , 2017 .

[163]  Can Li,et al.  Enhanced performance of direct Z-scheme CuS-WO 3 system towards photocatalytic decomposition of organic pollutants under visible light , 2017 .

[164]  Xiaoli Cui,et al.  Facile synthesis of a heterogeneous Li2TiO3/TiO2 nanocomposite with enhanced photoelectrochemical water splitting , 2017 .

[165]  R. R. Philip,et al.  Rapid room temperature crystallization of TiO2 nanotubes , 2017 .

[166]  Low Temperature-Derived 3D Hexagonal Crystalline Fe3O4 Nanoplates for Water Purification. , 2018, ACS applied materials & interfaces.

[167]  Lei Cheng,et al.  CdS-Based photocatalysts , 2018 .

[168]  D. Xu,et al.  Water steam modified crystallization and microstructure of mesoporous TiO 2 nanofibers , 2018 .

[169]  M. Chhowalla Synthesis and Applications , 2016 .

[170]  O. Crosby,et al.  nanotubes , 2020, Catalysis from A to Z.