F.E. computation of a triaxial specimen using a polycrystalline model

Abstract The crystallographic approach provides an improved framework with respect to the classical macroscopic models to predict the stress-strain behavior of polycrystalline material. The model consists in a set of equations to represent the phase behavior, and a concentration rule. The present paper shows a numerical implementation of such a model, written in the framework of viscoplasticity with a threshold, in a parallel version of the F.E. code ZeBuLoN. Heavy computations can then be made. The system is used to simulate the mechanical response of a biaxial specimen developed at Laboratoire de Mecanique et Technologie de Cachan. This type of specimen is specially designed to support three-dimensional non-proportional loading paths, which are badly represented by classical models. The response obtained with the polycrystalline model is shown, and compared with the experimental data at the global scale. Local information concerning the stress and strain heterogeneity and the slip system activity are also available from the computation.

[1]  G. Cailletaud,et al.  F. E. calculations of copper bicrystal specimens submitted to tension-compression tests , 1994 .

[2]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[3]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[4]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[5]  J. Mandel Generalisation de la theorie de plasticite de W. T. Koiter , 1965 .

[6]  John W. Hutchinson,et al.  Elastic-plastic behaviour of polycrystalline metals and composites , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  S. Calloch,et al.  Additional Hardening Due to Tension-Torsion Nonproportional Loadings: Influence of the Loading Path Shape , 1997 .

[8]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[9]  G. Cailletaud A micromechanical approach to inelastic behaviour of metals , 1992 .

[10]  P. Pilvin Approches multiechelles pour la prévison du comportement anélastique des métaux , 1990 .

[11]  G. Cailletaud,et al.  Utilisation de modèles polycristallins pour le calcul par éléments finis , 1994 .

[12]  G. Cailletaud,et al.  Single Crystal Modeling for Structural Calculations: Part 2—Finite Element Implementation , 1991 .

[13]  Frédéric Feyel,et al.  Application du calcul parallèle aux modèles à grand nombre de variables internes , 1998 .

[14]  D. Marquis,et al.  TRIAXIAL TENSION-COMPRESSION LOADINGS IN CYCLIC ELASTO-PLASTICITY : EXPERIMENTAL AND NUMERICAL ASPECTS , 1996 .

[15]  P. Franciosi,et al.  The concepts of latent hardening and strain hardening in metallic single crystals , 1985 .

[16]  Reijo Kouhia,et al.  On the solution of non-linear finite element equations , 1992 .

[17]  Thomas J. R. Hughes,et al.  Unconditionally stable algorithms for quasi-static elasto/visco-plastic finite element analysis , 1978 .