Metallophilic interactions in closed-shell copper(I) compounds--a theoretical study.

Cuprophilic interactions in neutral perpendicular model dimers of the type (CH3CuX)2 (X = OH2, NH3, SH2, PH3, N2, CO, CS, CNH, CNLi) were analyzed by ab initio quantumchemical methods. The basis set superposition error for the weakly interacting CH3CuX subunits is significant and is discussed in detail. A new correlation-consistent pseudopotential valence basis set for Cu. derived at the second-order Møller-Plesset level suppresses considerably the basis set superposition error in Cu-Cu interactions compared to the standard Hartree-Fock optimized valence basis set. This allowed the first accurate predictions of cuprophilicity, which has been the subject of considerable debate in the past. The dependence of the strength of cuprophilic interactions on the nature of the ligand X was addressed. The Cu-Cu interaction increases with increasing sigma-donor and pi-acceptor capability of the ligand and is approximately one-third of the well-documented aurophilic interactions. By fitting our potential-energy data to the Hershbach-Laurie equation, we determined a relation between the Cu-Cu bond length and the Cu-Cu force constant; this is important for future studies on vibrational behaviour. The role of relativistic effects on the structure and the interaction energy is also discussed. Finally we investigated cuprophilic interactions in (CH3Cu)4 as a model species for compounds isolated and characterized by X-ray diffraction.

[1]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[2]  Pekka Pyykkö,et al.  Theory of the d10–d10 Closed‐Shell Attraction: 1. Dimers Near Equilibrium , 1997 .

[3]  K. Hodgson,et al.  A Short Copper-Copper Distance in a (μ-1,2-Peroxo)dicopper(II) Complex Having a 1,8-Naphthyridine Unit as an Additional Bridge. , 2001, Angewandte Chemie.

[4]  J. Fackler,et al.  Luminescence and metal-metal interactions in binuclear gold(I) compounds , 1989 .

[5]  P. Schwerdtfeger,et al.  Extremely Strong s2 – s2 Closed‐Shell Interactions , 2000 .

[6]  D. Coucouvanis,et al.  Crystallographic evidence for copper-copper bonding at 2.8 Ang. Crystal and molecular structure of tetrakis(tetraphenylphosphonium) hexakis(1,2-dithiosquarato)octacuprate(I) , 1974 .

[7]  Pekka Pyykkö,et al.  Strong Closed-Shell Interactions in Inorganic Chemistry. , 1997, Chemical reviews.

[8]  R. Hoffmann,et al.  Thallium(I)-thallium(I) and indium(I)-indium(I) interactions: from the molecular to the solid state , 1990 .

[9]  W. Schwarz,et al.  Final Comment on the Discussions of "The Case of Cuprite". , 2000, Angewandte Chemie.

[10]  M. Marsch,et al.  Die Kristallstrukturen eines Lower‐order‐ und eines „Higher‐order”︁‐Cyanocuprates: [tBuCu(CN)Li(OEt2)2]∞ und [tBuCutBu{Li(thf)(pmdeta)2CN}] , 1998 .

[11]  G. Koten,et al.  Dynamics of 3c−2e Bonded Aryl Groups in Arylcopper, -Silver and -Gold Cluster Derivatives , 1979 .

[12]  F. Cotton,et al.  Experimental and theoretical studies of the copper(I) and silver(I) dinuclear N,N'-di-p-tolylformamidinato complexes , 1988 .

[13]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the first row transition elements , 1987 .

[14]  P. Schwerdtfeger Metal-metal bonds in thallium(I)-thallium(I) compounds: fact or fiction? , 1991 .

[15]  J. Long,et al.  Ligand-Unsupported Metal−Metal (M = Cu, Ag) Interactions between Closed-Shell d10 Trinuclear Systems , 1997 .

[16]  G. Frenking,et al.  Theoretical Studies of Organometallic Compounds. XIV. Structure and Bonding of the Transition Metal Methyl and Phenyl Compounds MCH3 and MC6H5 (M = Cu, Ag, Au) and M(CH3)2 and M(C6H5)2 (M = Zn, Cd, Hg) , 1995 .

[17]  B. T. Kilbourn,et al.  Crystal structure (at –40°) of tetrakis[trimethylsilylmethylcopper(I)], an alkyl bridged, square planar, tetranuclear copper(I) cluster , 1973 .

[18]  J. Poblet,et al.  Cuprophilicity, a still elusive concept: a theoretical analysis of the ligand-unsupported CuI–CuI interaction in two recently reported complexes , 1998 .

[19]  V. Miskowski,et al.  Resonance Raman Investigation of the Au(I)−Au(I) Interaction of the 1[dσ*pσ] Excited State of Au2(dcpm)2(ClO4)2 (dcpm = Bis(dicyclohexylphosphine)methane) , 1999 .

[20]  R. Hoffmann,et al.  Electronic structure of M4(CO)12Hn and M4Cp4Hn complexes , 1978 .

[21]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[22]  J. C. Spence,et al.  Über die Wechselwirkung zwischen abgeschlossenen Schalen, polare Kovalenz, Löcher in d‐Schalen und die direkte Abbildung von Orbitalen: der Fall Cuprit , 2000 .

[23]  C. Bauschlicher,et al.  Theoretical studies of the first- and second-row transition-metal mono- and dicarbonyl positive ions , 1990 .

[24]  R. Evarestov,et al.  Electronic structure and properties of Cu2O , 1997 .

[25]  John E. Carpenter,et al.  Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure , 1988 .

[26]  F. Weinhold,et al.  Natural population analysis , 1985 .

[27]  A. Avdeef,et al.  Studies of the cubane cluster of copper(I). A modified self-consistent charge and configuration molecular orbital investigation of the cluster containing the Cu8S124- core , 1978 .

[28]  M. Schütz,et al.  The aurophilic attraction as interpreted by local correlation methods , 1999 .

[29]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[30]  Christoph Janiak,et al.  Pentabenzylcyclopentadienylthallium(I): Synthese und Struktur einer „dimeren”︁ Organothallium‐Verbindung mit Tl‐Tl‐Wechselwirkung , 1987 .

[31]  Behrens,et al.  The relation between ion pair structures and reactivities of lithium cuprates , 2000, Chemistry.

[32]  J. Strähle,et al.  Komplexe von 1,5-Di(p-tolyl)-1,4-pentaazadien-3-id, Kristallstrukturen von [Cu(tolylNNNNNtolyl)]3 und [Ni(tolylNNNNNtolyl)2]2† , 1985 .

[33]  J. Beck,et al.  Complexes of 1,5‐Di(p‐tolyl)‐1,4‐pentaazadien‐3‐ide, Crystal Structures of [Cu(tolylNNNNNtolyl)]3 and [Ni(tolylNNNNNtolyl)2]2 , 1985 .

[34]  T. Tamm,et al.  Theory of the d10−d10 Closed-Shell Attraction. 4. X(AuL)nm+ Centered Systems , 1998 .

[35]  K. Morokuma,et al.  Reaction Pathway of the Conjugate Addition of Lithium Organocuprate Clusters to Acrolein , 1997 .

[36]  P. Pyykkö,et al.  Theory of the d10–d10 Closed-Shell Attraction: 2. Long-Distance Behaviour and Nonadditive Effects in Dimers and Trimers of Type [(x-Au-L)n] (n = 2, 3; X = Cl, I, H; L = PH3, PMe3, -N≡CH)† , 1997 .

[37]  P. Harvey Reparameterized Herschbach-Laurie empirical relationships between metal-metal distances and force constants applied to homonuclear bi- and polynuclear complexes (M = Cr, MO, Rh, Pd, Ag, W, Re, Ir, Pt, Au, Hg) , 1996 .

[38]  G. Koten,et al.  2,4,6-Triisopropylphenylcopper, a new tetranuclear organocopper aggregate with unsymmetrically bridging s-p bonded aryl ligands , 1989 .

[39]  G. Frenking,et al.  The CuC bond dissociation energy of CuCH3. A dramatic failure of the QCISD(T) method , 1994 .

[40]  D. Sundholm,et al.  Luminescent Characterization of Solution Oligomerization Process Mediated Gold−Gold Interactions. DFT Calculations on [Au2Ag2R4L2]n Moieties , 2000 .

[41]  M. Bruce,et al.  AN UNPRECEDENTED PHOTOCHEMICAL CIS TO TRANS ISOMERIZATION OF DINUCLEAR GOLD(I) BIS(DIPHENYLPHOSPHINO)ETHYLENE COMPLEXES , 1995 .

[42]  N. Runeberg,et al.  Predicted ligand dependence of the Au(I)…Au(I) attraction in (XAuPH3)2 , 1994 .

[43]  W. Schwarz,et al.  Über die Bindung zwischen abgeschlossenen Schalen, über Löcher in d‐Schalen, über polare Kovalenz und über die Abbildung von Orbitalen: der Fall Cuprit , 2000 .

[44]  L. Gade “Hyt was of Gold, and Shon so Bryghte…”†: Luminescent Gold(I) Compounds , 1997 .

[45]  J. Zuo,et al.  On Closed-Shell Interactions, Polar Covalences, d Shell Holes, and Direct Images of Orbitals: The Case of Cuprite. , 2000, Angewandte Chemie.

[46]  W. C. Lineberger,et al.  Binding energies in atomic negative ions , 1975 .

[47]  Electronic structure and properties of Cu 2 O , 1997 .

[48]  R. Hoffmann,et al.  Platinum(0)-platinum(0) dimers. Bonding relationships in a d10-d10 system , 1978 .

[49]  Che,et al.  Cuprophilicity: Spectroscopic and Structural Evidence for Cu-Cu Bonding Interactions in Luminescent Dinuclear Copper(I) Complexes with Bridging Diphosphane Ligands We are grateful for financial support from The University of Hong Kong, the Hong Kong University Foundation, and the Research Grants Cou , 2000, Angewandte Chemie.

[50]  R. Hoffmann,et al.  TII‐TII‐Wechselwirkung in Molekülen – eine MO‐Analyse , 1989 .

[51]  P. Schwerdtfeger,et al.  THEORETICAL STUDIES ON THE PHOTOCHEMISTRY OF THE CIS-TO-TRANS CONVERSION IN DINUCLEAR GOLD HALIDE BIS(DIPHENYLPHOSPHINO)ETHYLENE COMPLEXES , 1998 .

[52]  C. Bauschlicher,et al.  Theoretical studies of the first- and second-row transition-metal methyls and their positive ions , 1989 .

[53]  C. Janiak,et al.  Pentabenzylcyclopentadienylthallium(I): Synthesis and Structure of a “Dimeric” Organothallium Compound with TlTl Interaction , 1987 .

[54]  Victor W. Laurie,et al.  Anharmonic Potential Constants and Their Dependence upon Bond Length , 1961 .

[55]  Geoffrey Wilkinson,et al.  Comprehensive Organometallic Chemistry II , 1995 .

[56]  R. Hoffmann,et al.  BINUCLEAR AND POLYMERIC GOLD(I) COMPLEXES , 1985 .

[57]  Ralf Wesendrup,et al.  Ungewöhnlich starke s2-s2-Wechselwirkungen , 2000 .

[58]  Frank Weinhold,et al.  Natural localized molecular orbitals , 1985 .

[59]  G. Boche,et al.  The Crystal Structures of a Lower Order and a "Higher Order" Cyanocuprate: [tBuCu(CN)Li(OEt2 )2 ]∞ and [tBuCutBu{Li(thf)(pmdeta)}2 CN]. , 1998, Angewandte Chemie.

[60]  Jan M.L. Martin,et al.  Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe , 2001 .

[61]  V. Miskowski,et al.  Silver and gold dimers. Crystal and molecular structures of Ag2(dmpm)2Br2 and [Au2(dmpm)2](PF6)2 and relation between metal-metal force constants and metal-metal separations , 1992 .

[62]  U. Siemeling,et al.  CUPROPHILICITY? A RARE EXAMPLE OF A LIGAND-UNSUPPORTED CUI-CUI INTERACTION , 1997 .

[63]  Pekka Pyykkö,et al.  Theory of d 10 -d 10 Closed-Shell Attraction. III. Rings , 1998 .

[64]  J. Zuo,et al.  Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O , 1999, Nature.

[65]  M. Jansen Homoatomare d10‐d10‐Wechselwirkungen — Auswirkungen auf Struktur‐ und Stoffeigenschaften , 1987 .

[66]  P. Schwerdtfeger,et al.  Ab initio spectroscopic properties for HgTl , 2000 .

[67]  K. L. Kalra,et al.  Tetrameric phosphinecopper(I) halides. X-ray crystallographic evidence for a cubane structure for the CU4Cl4 core of tetra-.mu.-chlorotetrakis(triphenylphosphine copper(I) and a step structure for the CU4Br4 core in crystalline tetra-.mu.-bromotetrakis(triphenylphosphine copper(I)-2-chloroform , 1973 .

[68]  F. Cotton,et al.  Further Study of Very Close Nonbonded Cu(I)-Cu(I) Contacts. Molecular Structure of a New Compound and Density Functional Theory Calculations. , 1998, Inorganic chemistry.

[69]  Suning Wang,et al.  Synthesis and characterization of the luminescent dithiolate-bridged dimer [n-Bu4N]2[Au(i-MNT)]2 (i-MNT=S2C2(CN)22−) and its structurally characterized, metal-metal-bonded gold(II) oxidation product [Ph4As]2[Au(i-MNT)Cl]2 , 1988 .

[70]  Roald Hoffmann,et al.  Building Bridges Between Inorganic and Organic Chemistry (Nobel Lecture) , 1982 .

[71]  W. Schwarz,et al.  Abschließender Kommentar zur Diskussion um den „Fall Cuprit“ , 2000 .

[72]  L. Gade „Hyt was of Gold, and Shon so Bryghte…”: lumineszente Gold(I)-Verbindungen† , 1997 .

[73]  R. Ahlrichs,et al.  An ab initio investigation of copper complexes with supershort copper-copper distances , 1990 .

[74]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[75]  R. Hoffmann,et al.  TII‐TII Interactions in the Molecular State—an MO Analysis , 1989 .