A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations

A class of modified block SSOR preconditioners is presented for solving symmetric positive definite systems of linear equations, which arise in the hierarchical basis finite element discretizations of the second order self‐adjoint elliptic boundary value problems. This class of methods is strongly related to two level methods, standard multigrid methods, and Jacobi‐like hierarchical basis methods. The optimal relaxation factors and optimal condition numbers are estimated in detail. Theoretical analyses show that these methods are very robust, and especially well suited to difficult problems with rough solutions, discretized using highly nonuniform, adaptively refined meshes.

[1]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[2]  Apostolos Hadjidimos,et al.  Accelerated overrelaxation method , 1978 .

[3]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[4]  O. Axelsson,et al.  On approximate factorization methods for block matrices suitable for vector and parallel processors , 1986 .

[5]  J. Maître,et al.  The contraction number of a class of two-level methods; an exact evaluation for some finite element subspaces and model problems , 1982 .

[6]  D. Braess The contraction number of a multigrid method for solving the Poisson equation , 1981 .

[7]  Zhong-Zhi Bai Modified Block SSOR Preconditioners for Symmetric Positive Definite Linear Systems , 2001, Ann. Oper. Res..

[8]  Maya Neytcheva Arithmetic and communication complexity of preconditioning methods , 1995 .

[9]  O. Axelsson A generalized SSOR method , 1972 .

[10]  Harry Yserentant,et al.  Hierarchical bases give conjugate gradient type methods a multigrid speed of convergence , 1986 .

[11]  Randolph E. Bank,et al.  An optimal order process for solving finite element equations , 1981 .

[12]  O. Axelsson Iterative solution methods , 1995 .

[13]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[14]  A. Hadjidimos,et al.  On the generalisation of the basic iterative methods for the solution of linear systems , 1983 .

[15]  H. Yserentant Erratum. On the Multi-Level Splitting of Finite Element Spaces.(Numer. Math. 49, 379-412 (1986)). , 1986 .

[16]  Randolph E. Bank,et al.  Analysis Of A Two-Level Scheme For Solving Finite Element Equations , 1980 .

[17]  Gene H. Golub,et al.  Matrix computations , 1983 .

[18]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[19]  Apostolos Hadjidimos,et al.  On the Convergence of Some Generalized Iterative Methods , 1986 .

[20]  O. Axelsson Incomplete block matrix factorization preconditioning methods. The ultimate answer , 1985 .

[21]  I. Gustafsson A class of first order factorization methods , 1978 .

[22]  O. Axelsson,et al.  Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.

[23]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[24]  G. Golub,et al.  Block Preconditioning for the Conjugate Gradient Method , 1985 .