Process forces and heat input as function of process parameters in AA5083 friction stir welds

AA5083 friction stir welds were produced using systematic experimental design, the process forces and heat input with varying parameters were studied. Helpful empirical models were developed in designing friction stir welding (FSW) tools and FSW welders. These models may be further helpful for making process parameter choice for this sort of alloy, defining welding program and control of process parameters by using computer numerical control friction stir welding welders. The results show that tool rotational speed, welding speed and tool shoulder diameter are most significant parameters affecting axial force and heat input, while longitudinal force is significantly affected by welding speed and probe diameter.

[1]  R Razal,et al.  Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy , 2011 .

[2]  Zhili Feng,et al.  Influence of thermo-mechanical parameters on texture and tensile behavior of friction stir processed Mg alloy , 2010 .

[3]  Carl D. Sorensen,et al.  Torque based weld power model for friction stir welding , 2007 .

[4]  Lawrence E Murr,et al.  Heat input and temperature distribution in friction stir welding , 1998 .

[5]  Satish V. Kailas,et al.  On the role of axial load and the effect of interface position on the tensile strength of a friction stir welded aluminium alloy , 2008 .

[6]  Hideo Yoshida,et al.  Aluminum and Aluminum Alloys , 1980 .

[7]  S. D. Bhole,et al.  Tensile properties of a friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pitch , 2010 .

[8]  Sunil Pandey,et al.  Effect of process parameters on friction stir welding of aluminum alloy 2219-T87 , 2010 .

[9]  Radovan Kovacevic,et al.  Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding , 2009, Journal of Materials Engineering and Performance.

[10]  Akihiro Ito,et al.  219 Friction Stir Welding時のツール温度測定(OS 溶接・接合) , 2001 .

[11]  Jiju Antony,et al.  Design of experiments for engineers and scientists , 2003 .

[12]  G. Maccarini,et al.  The effect of process parameters and tool geometry on mechanical properties of friction stir welded aluminum butt joints , 2009 .

[13]  Philip J. Withers,et al.  Dissimilar friction stir welds in AA5083-AA6082. Part II: Process parameter effects on microstructure , 2006 .

[14]  Carl D. Sorensen,et al.  Experimental Measurements of Load Distributions on Friction Stir Weld Pin Tools , 2007 .

[15]  H. Bhadeshia,et al.  Review: Friction stir welding tools , 2011 .

[16]  T. J. Lienert,et al.  Improved weldability diagram for pulsed laser welded austenitic stainless steels , 2003 .

[17]  V. Balasubramanian,et al.  Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy , 2008 .

[18]  Anthony P. Reynolds,et al.  Torque, Power Requirement and Stir Zone Geometry in Friction Stir Welding Through Modeling and Experiments , 2009 .

[19]  Antonino Squillace,et al.  Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by Friction Stir Welding , 2006 .

[20]  G. Mathers The welding of aluminium and its alloys , 2002 .

[21]  Mariano Ruiz Espejo,et al.  Design of Experiments for Engineers and Scientists , 2006, Technometrics.

[22]  F. C. Thompson,et al.  Welding of Aluminium and its Alloys , 1956, Nature.

[23]  Carl D. Sorensen,et al.  A look at the statistical identification of critical process parameters in friction stir welding , 2007 .

[24]  V. Balasubramanian,et al.  Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy , 2007 .

[25]  Woong-Seong Chang,et al.  Influence of Heat Input on Mechanical Properties of Multipass Low-Alloy Steel Weld Metal , 2008 .

[26]  Jefferson W. Pew,et al.  A Torque Based Power Input Model for Friction Stir Welding , 2006 .

[27]  Rajiv S. Mishra,et al.  Process forces during friction stir channeling in an aluminum alloy , 2011 .

[28]  M. N. James,et al.  Optimising FSW process parameters to minimise defects and maximise fatigue life in 5083-H321 aluminium alloy , 2008 .

[29]  B. B. Grimmett,et al.  Friction stir welding studies on mild steel , 2003 .

[30]  Philip J. Withers,et al.  Dissimilar friction stir welds in AA5083-AA6082. Part I: Process parameter effects on thermal history and weld properties , 2006 .