Connection between a few Jeziorski‐Monkhorst ansatz‐based methods

Different Jeziorski-Monkhorst ansatz-based methods are unified according to how to group terms to eliminate the redundancy problem. It is found that some seemingly different methods used to do MRCC are equivalent. It is argued that the various defining equations are not entirely proper, in the sense that the proper residual condition is not satisfied. This may partially rationalize the unsatisfactory performance of the various methods for single reference systems. In contrast, the MRexpT method satisfies the proper residual condition and it is expected that it will outperform other JM ansatz-based methods in single-reference cases. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009

[1]  Michael Hanrath,et al.  An exponential multireference wave-function Ansatz. , 2005, The Journal of chemical physics.

[2]  Garnet Kin-Lic Chan,et al.  Canonical transformation theory for multireference problems. , 2006, The Journal of chemical physics.

[3]  Marcel Nooijen,et al.  Many‐body similarity transformations generated by normal ordered exponential excitation operators , 1996 .

[4]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[5]  Mark R. Hoffmann,et al.  A unitary multiconfigurational coupled‐cluster method: Theory and applications , 1988 .

[6]  Francesco A Evangelista,et al.  Coupling term derivation and general implementation of state-specific multireference coupled cluster theories. , 2007, The Journal of chemical physics.

[7]  Uttam Sinha Mahapatra,et al.  State-Specific Multi-Reference Coupled Cluster Formulations: Two Paradigms , 1998 .

[8]  Michael Hanrath,et al.  Initial applications of an exponential multi-reference wavefunction ansatz , 2006 .

[9]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[10]  Sudip Chattopadhyay,et al.  A size-extensive state-specific multi-reference many-body approach using incomplete model spaces , 2003 .

[11]  S. Wilson,et al.  On the use of Brillouin-Wigner perturbation theory for many-body systems , 2000 .

[12]  Francesco A Evangelista,et al.  High-order excitations in state-universal and state-specific multireference coupled cluster theories: model systems. , 2006, The Journal of chemical physics.

[13]  Nevin Horace Oliphant,et al.  A multireference coupled-cluster method using a single-reference formalism. , 1991 .

[14]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[15]  Piecuch,et al.  Application of Hilbert-space coupled-cluster theory to simple (H2)2 model systems: Planar models. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[16]  Rodney J. Bartlett,et al.  A multi-reference coupled-cluster method for molecular applications , 1984 .

[17]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[18]  Josef Paldus,et al.  A Critical Assessment of Coupled Cluster Method in Quantum Chemistry , 2007 .

[19]  Garnet Kin-Lic Chan,et al.  Canonical transformation theory from extended normal ordering. , 2007, The Journal of chemical physics.

[20]  S. Chattopadhyay,et al.  Property calculations using perturbed orbitals via state-specific multireference coupled-cluster and perturbation theories , 1999 .

[21]  Uttam Sinha Mahapatra,et al.  A size-consistent state-specific multireference coupled cluster theory: Formal developments and molecular applications , 1999 .

[22]  Uttam Sinha Mahapatra,et al.  A state-specific multi-reference coupled cluster formalism with molecular applications , 1998 .

[23]  Anna I. Krylov,et al.  Size-consistent wave functions for bond-breaking: the equation-of-motion spin-flip model , 2001 .

[24]  I. Hubač,et al.  Multireference Brillouin—Wigner Coupled-Cluster Theory: Hilbert Space Approach , 1997 .

[25]  Karol Kowalski,et al.  New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states. , 2004, The Journal of chemical physics.

[26]  J. Simons,et al.  Analytical energy gradients for a unitary coupled-cluster theory , 1987 .

[27]  Jiří Pittner,et al.  Continuous transition between Brillouin-Wigner and Rayleigh-Schrödinger perturbation theory, generalized Bloch equation, and Hilbert space multireference coupled cluster , 2003 .

[28]  S. Pal,et al.  Use of Cluster Expansion Methods in the Open-Shell Correlation Problem , 1989 .

[29]  Piotr Piecuch,et al.  Single-reference, size-extensive, non-iterative coupled-cluster approaches to bond breaking and biradicals , 2006 .

[30]  Karol Kowalski,et al.  The method of moments of coupled-cluster equations and the renormalized CCSD[T], CCSD(T), CCSD(TQ), and CCSDT(Q) approaches , 2000 .

[31]  Ludwik Adamowicz,et al.  A state-selective multireference coupled-cluster theory employing the single-reference formalism , 1993 .

[32]  Piecuch,et al.  Application of Hilbert-space coupled-cluster theory to simple (H2)2 model systems. II. Nonplanar models. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[33]  Sanghamitra Das,et al.  An externally-corrected size-extensive single-root MRCC formalism: its kinship with the rigorously size-extensive state-specific MRCC theory , 2006 .

[34]  Anna I Krylov,et al.  Spin-flip equation-of-motion coupled-cluster electronic structure method for a description of excited states, bond breaking, diradicals, and triradicals. , 2006, Accounts of chemical research.

[35]  Jürgen Gauss,et al.  Triple excitations in state-specific multireference coupled cluster theory: application of Mk-MRCCSDT and Mk-MRCCSDT-n methods to model systems. , 2008, The Journal of chemical physics.

[36]  Rodney J. Bartlett,et al.  Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem , 1978 .

[37]  J. Pittner,et al.  State-specific Brillouin–Wigner multireference coupled cluster study of the F2 molecule: assessment of the a posteriori size-extensivity correction , 2001 .

[38]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[39]  R. Bartlett,et al.  A general model-space coupled-cluster method using a Hilbert-space approach , 1990 .

[40]  J. Paldus,et al.  Valence universal exponential ansatz and the cluster structure of multireference configuration interaction wave function , 1989 .

[41]  Ivan Hubač,et al.  Multireference Brillouin-Wigner Coupled-Cluster Theory. Single-root approach. , 1998 .

[42]  D. Mukherjee,et al.  A Coupled Cluster Approach to the Electron Correlation Problem Using a Correlated Reference State , 1995 .

[43]  Ivan Hubač,et al.  Four- and 8-reference state-specific Brillouin-Wigner coupled-cluster method: Study of the singlet oxygen , 2002 .

[44]  Karol Kowalski,et al.  Extensive generalization of renormalized coupled-cluster methods. , 2005, The Journal of chemical physics.