Redox Species of Redox Flow Batteries: A Review

Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

[1]  E. Biilmann Oxidation and reduction potentials of organic compounds , 1924 .

[2]  L. H. Thaller,et al.  Electrically rechargeable REDOX flow cell , 1976 .

[3]  R. C. Knechtli,et al.  Zinc‐Bromine Secondary Battery , 1977 .

[4]  L. H. Thaller,et al.  Redox flow cell energy storage systems , 1979 .

[5]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[6]  A. Bard,et al.  Solution Redox Couples for Electrochemical Energy Storage I . Iron (III)‐Iron (II) Complexes with O‐Phenanthroline and Related Ligands , 1981 .

[7]  N. H. Hagedorn,et al.  Single cell performance studies on the Fe/Cr Redox Energy Storage System using mixed reactant solutions at elevated temperature , 1983 .

[8]  Chi-Chao Wan,et al.  A study of the discharge performance of the Ti/Fe redox flow system , 1984 .

[9]  Maria Skyllas-Kazacos,et al.  Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery , 1985 .

[10]  Maria Skyllas-Kazacos,et al.  Efficient Vanadium Redox Flow Cell , 1987 .

[11]  R. Becker,et al.  Aqueous Redox Transition Metal Complexes for Electrochemical Applications as a Function of pH , 1987 .

[12]  M. Morita,et al.  A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte , 1988 .

[13]  A. Murthy,et al.  Fe(III)/Fe(II): ligand systems for use as negative half-cells in redox-flow cells , 1989 .

[14]  A. Price,et al.  A novel approach to utility scale energy storage [regenerative fuel cells] , 1999 .

[15]  Michael Grätzel,et al.  Powering the planet , 2000, Nature.

[16]  Chulheung Bae,et al.  Chromium redox couples for application to redox flow batteries , 2002 .

[17]  Yang Liu,et al.  Studies of the Feasibility of a Ce4 + / Ce3 + ­ V 2 + / V 3 + Redox Cell , 2002 .

[18]  Shigeyuki Iwasa,et al.  Rechargeable batteries with organic radical cathodes , 2002 .

[19]  Maria Skyllas-Kazacos,et al.  Novel vanadium chloride/polyhalide redox flow battery , 2003 .

[20]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[21]  Björn A. Sandén,et al.  Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies , 2005 .

[22]  B. Yi,et al.  Studies on Iron "Fe 3+ /Fe 2+ …-Complex/Bromine "Br 2 /Br … Redox Flow Cell in Sodium Acetate Solution , 2006 .

[23]  Yusheng Yang,et al.  A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application , 2006 .

[24]  Qing Wang,et al.  Redox targeting of insulating electrode materials: a new approach to high-energy-density batteries. , 2006, Angewandte Chemie.

[25]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[26]  M. Taggougui,et al.  Application of a nitroxide radical as overcharge protection in rechargeable lithium batteries , 2007 .

[27]  M. H. Chakrabarti,et al.  Evaluation of electrolytes for redox flow battery applications , 2007 .

[28]  J. Dahn,et al.  Comparative studies of three redox shuttle molecule classes for overcharge protection of LiFePO4-based Li-ion cells , 2007 .

[29]  M. Armand,et al.  Building better batteries , 2008, Nature.

[30]  Vladimir Kolosnitsyn,et al.  Lithium-sulfur batteries: Problems and solutions , 2008 .

[31]  Xindong Wang,et al.  Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery , 2008 .

[32]  Gaoping Cao,et al.  Novel organic redox flow batteries using soluble quinonoid compounds as positive materials , 2009, 2009 World Non-Grid-Connected Wind Power and Energy Conference.

[33]  D. Astruc Electron-reservoir complexes and other redox-robust reagents: functions and applications , 2009 .

[34]  E. Plichta,et al.  Electrochemical studies of ferrocene in a lithium ion conducting organic carbonate electrolyte , 2009 .

[35]  Charles W. Monroe,et al.  Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries , 2009 .

[36]  Tetsuo Sakai,et al.  High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries , 2010 .

[37]  Maria Skyllas-Kazacos,et al.  Recent advances with UNSW vanadium‐based redox flow batteries , 2010 .

[38]  T. Sugimoto,et al.  High-performance Lithium Secondary Batteries Using Cathode Active Materials of Triquinoxalinylenes Exhibiting Six Electron Migration , 2011 .

[39]  John B. Goodenough,et al.  Rechargeable alkali-ion cathode-flow battery , 2011 .

[40]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[41]  Frank C. Walsh,et al.  Characterization of a zinc–cerium flow battery , 2011 .

[42]  G. Soloveichik Battery technologies for large-scale stationary energy storage. , 2011, Annual review of chemical and biomolecular engineering.

[43]  Organic Radical Battery Approaching Practical Use , 2011 .

[44]  Huamin Zhang,et al.  Ion exchange membranes for vanadium redox flow battery (VRB) applications , 2011 .

[45]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[46]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[47]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[48]  Chris Menictas,et al.  Performance of vanadium-oxygen redox fuel cell , 2011 .

[49]  Gurukar Shivappa Suresh,et al.  Electrode materials for aqueous rechargeable lithium batteries , 2011 .

[50]  Zhenguo Yang,et al.  A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte , 2011 .

[51]  Min‐Sik Park,et al.  Development of metal-based electrodes for non-aqueous redox flow batteries , 2011 .

[52]  Charles W. Monroe,et al.  Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries , 2011 .

[53]  John B Goodenough,et al.  Aqueous cathode for next-generation alkali-ion batteries. , 2011, Journal of the American Chemical Society.

[54]  Charles W. Monroe,et al.  Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries , 2011 .

[55]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[56]  H. Sakaebe,et al.  A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries , 2011 .

[57]  Matthias Wessling,et al.  A polyelectrolyte membrane-based vanadium/air redox flow battery , 2011 .

[58]  Electronic effects of substituents on redox shuttles for overcharge protection of Li-ion batteries , 2012 .

[59]  Charles W. Monroe,et al.  Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery , 2012 .

[60]  Lu Zhang,et al.  Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection , 2012 .

[61]  Fikile R. Brushett,et al.  An All‐Organic Non‐aqueous Lithium‐Ion Redox Flow Battery , 2012 .

[62]  Lelia Cosimbescu,et al.  Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery. , 2012, Chemical communications.

[63]  C. Low,et al.  Progress in redox flow batteries, remaining challenges and their applications in energy storage , 2012 .

[64]  Ping He,et al.  Li‐Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li‐ion and Redox Flow Batteries , 2012 .

[65]  Huamin Zhang,et al.  A high-energy-density redox flow battery based on zinc/polyhalide chemistry. , 2012, ChemSusChem.

[66]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[67]  Andreas Sumper,et al.  A review of energy storage technologies for wind power applications , 2012 .

[68]  Gareth Kear,et al.  Development of the all‐vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects , 2012 .

[69]  Seok-Gwang Doo,et al.  Non-Aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2′-bipyridine) Complex Electrolyte , 2012 .

[70]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[71]  P. Fischer,et al.  1,3-Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries , 2013 .

[72]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[73]  P. Modiba,et al.  Kinetics study of transition metal complexes (Ce–DTPA, Cr–DTPA and V–DTPA) for redox flow battery applications , 2013 .

[74]  Jean-Marie Tarascon,et al.  Silicon-Based Non Aqueous Anolyte for Li Redox-Flow Batteries , 2013 .

[75]  Zheng Li,et al.  Electronic Supplementary Information Aqueous Semi-Solid Flow Cell: Demonstration and Analysis , 2013 .

[76]  Michael Grätzel,et al.  Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery. , 2013, Physical chemistry chemical physics : PCCP.

[77]  Hye Ryung Byon,et al.  High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode , 2013, Nature Communications.

[78]  Seung-Hyeon Moon,et al.  A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective , 2013 .

[79]  Hye Ryung Byon,et al.  High‐Performance Lithium‐Iodine Flow Battery , 2013 .

[80]  Lele Peng,et al.  A reversible Br2/Br− redox couple in the aqueous phase as a high-performance catholyte for alkali-ion batteries , 2014 .

[81]  H. Althues,et al.  Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators , 2014 .

[82]  Piergiorgio Alotto,et al.  Redox flow batteries for the storage of renewable energy: A review , 2014 .

[83]  Guihua Yu,et al.  A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. , 2014, Nano letters.

[84]  Eva Magdalena,et al.  Description and performance of a novel aqueous all-copper redox flow battery , 2014 .

[85]  Jürgen Janek,et al.  TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries. , 2014, Journal of the American Chemical Society.

[86]  D. Lloyd,et al.  Towards a thermally regenerative all-copper redox flow battery. , 2014, Physical chemistry chemical physics : PCCP.

[87]  C. Monroe,et al.  Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries , 2014 .

[88]  Fang Wang,et al.  An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples , 2014 .

[89]  T. Shiga,et al.  Catalytic Cycle Employing a TEMPO-Anion Complex to Obtain a Secondary Mg-O2 Battery. , 2014, The journal of physical chemistry letters.

[90]  Lelia Cosimbescu,et al.  TEMPO‐Based Catholyte for High‐Energy Density Nonaqueous Redox Flow Batteries , 2014, Advanced materials.

[91]  Jie Gao,et al.  Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy , 2014 .

[92]  Gang Li,et al.  Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte. , 2014, Angewandte Chemie.

[93]  Kanyarat Holasut,et al.  Prospects of Carbon Based Micro-Fluid Electrolyte for the Vanadium Redox Flow Battery (VRB) , 2014 .

[94]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[95]  Qing Wang,et al.  Redox Targeting of Anatase TiO2 for Redox Flow Lithium‐Ion Batteries , 2014 .

[96]  Gareth H McKinley,et al.  Polysulfide flow batteries enabled by percolating nanoscale conductor networks. , 2014, Nano letters.

[97]  Nicholas S. Hudak,et al.  Application of Redox Non‐Innocent Ligands to Non‐Aqueous Flow Battery Electrolytes , 2014 .

[98]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[99]  Yu Ding,et al.  A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery. , 2015, Nano letters.

[100]  Ketack Kim,et al.  Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries. , 2015, ChemSusChem.

[101]  Jun Liu,et al.  On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Li–S Redox Flow Batteries , 2015 .

[102]  Yi-Chun Lu,et al.  Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries , 2015, Nature Communications.

[103]  Joan Ramon Morante,et al.  Non-aqueous semi-solid flow battery based on Na-ion chemistry. P2-type Na(x)Ni(0.22)Co(0.11)Mn(0.66)O(2)-NaTi2(PO4)3. , 2015, Chemical communications.

[104]  Roy G. Gordon,et al.  Alkaline quinone flow battery , 2015, Science.

[105]  Gareth H. McKinley,et al.  Biphasic Electrode Suspensions for Li‐Ion Semi‐solid Flow Cells with High Energy Density, Fast Charge Transport, and Low‐Dissipation Flow , 2015 .

[106]  Anthony K. Burrell,et al.  Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries , 2015 .

[107]  Nicolas E. Holubowitch,et al.  A Highly Soluble Organic Catholyte for Non‐Aqueous Redox Flow Batteries , 2015 .

[108]  U. Schubert,et al.  An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials , 2015, Nature.

[109]  Jun Liu,et al.  Towards High‐Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species , 2015 .

[110]  Jun Liu,et al.  Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery , 2015, Nature Communications.

[111]  Bin Li,et al.  Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. , 2015, Angewandte Chemie.

[112]  Kensuke Takechi,et al.  A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries , 2015, Advanced materials.

[113]  Yvonne Freeh,et al.  Handbook Of Batteries , 2016 .