Efficient and Flexible Deformation Representation for Data-Driven Surface Modeling

Effectively characterizing the behavior of deformable objects has wide applicability but remains challenging. We present a new rotation-invariant deformation representation and a novel reconstruction algorithm to accurately reconstruct the positions and local rotations simultaneously. Meshes can be very efficiently reconstructed from our representation by matrix pre-decomposition, while, at the same time, hard or soft constraints can be flexibly specified with only positions of handles needed. Our approach is thus particularly suitable for constrained deformations guided by examples, providing significant benefits over state-of-the-art methods. Based on this, we further propose novel data-driven approaches to mesh deformation and non-rigid registration of deformable objects. Both problems are formulated consistently as finding an optimized model in the shape space that satisfies boundary constraints, either specified by the user, or according to the scan. By effectively exploiting the knowledge in the shape space, our method produces realistic deformation results in real-time and produces high quality registrations from a template model to a single noisy scan captured using a low-quality depth camera, outperforming state-of-the-art methods.

[1]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[2]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[3]  K. Hormann,et al.  Multi‐Scale Geometry Interpolation , 2010, Comput. Graph. Forum.

[4]  Li Zhang,et al.  Spacetime faces: high resolution capture for modeling and animation , 2004, SIGGRAPH 2004.

[5]  Daniel Cohen-Or,et al.  Linear rotation-invariant coordinates for meshes , 2005, ACM Trans. Graph..

[6]  Jonathan T. Barron,et al.  3D self-portraits , 2013, ACM Trans. Graph..

[7]  Kun Zhou,et al.  Large mesh deformation using the volumetric graph Laplacian , 2005, ACM Trans. Graph..

[8]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[9]  Shi-Min Hu,et al.  Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes , 2006, International Journal of Computer Vision.

[10]  Nadia Magnenat-Thalmann,et al.  Real‐Time Subspace Integration for Example‐Based Elastic Material , 2015, Comput. Graph. Forum.

[11]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[12]  Mario Botsch,et al.  Example‐Driven Deformations Based on Discrete Shells , 2011, Comput. Graph. Forum.

[13]  Marc Alexa,et al.  Linear combination of transformations , 2002, ACM Trans. Graph..

[14]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[15]  Dominique Bechmann,et al.  A survey of spatial deformation from a user-centered perspective , 2008, TOGS.

[16]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.

[17]  Gary K. L. Tam,et al.  Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid , 2013, IEEE Transactions on Visualization and Computer Graphics.

[18]  Leonidas J. Guibas,et al.  Robust single-view geometry and motion reconstruction , 2009, SIGGRAPH 2009.

[19]  Lin Gao,et al.  Efficient and Flexible Deformation Representation for Data-Driven Surface Modeling , 2016 .

[20]  Ligang Liu,et al.  Dual Laplacian editing for meshes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[21]  Takeo Igarashi,et al.  Real-time example-based elastic deformation , 2012, SCA '12.

[22]  Michael Garland,et al.  Free-form motion processing , 2008, TOGS.

[23]  Michael J. Black,et al.  MoSh: motion and shape capture from sparse markers , 2014, ACM Trans. Graph..

[24]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[25]  Markus H. Gross,et al.  Efficient simulation of example-based materials , 2012, SCA '12.

[26]  AlexaMarc Linear combination of transformations , 2002 .

[27]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[28]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[29]  Craig Gotsman,et al.  Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation , 2015, IEEE Transactions on Visualization and Computer Graphics.

[30]  Michael J. Black,et al.  Lie Bodies: A Manifold Representation of 3D Human Shape , 2012, ECCV.

[31]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[32]  Andrew W. Fitzgibbon,et al.  Real-time non-rigid reconstruction using an RGB-D camera , 2014, ACM Trans. Graph..

[33]  Mark Pauly,et al.  Dynamic 2D/3D registration for the Kinect , 2013, SIGGRAPH '13.

[34]  Wojciech Matusik,et al.  Articulated mesh animation from multi-view silhouettes , 2008, ACM Trans. Graph..

[35]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.

[36]  Byung-Uck Kim,et al.  Real-time data driven deformation using kernel canonical correlation analysis , 2008, ACM Trans. Graph..

[37]  Wilmot Li,et al.  Dynamic sprites: artistic authoring of interactive animations , 2015, Comput. Animat. Virtual Worlds.

[38]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[40]  Peter Eisert,et al.  Fast nonrigid mesh registration with a data-driven deformation prior , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[41]  M. Pauly,et al.  Embedded deformation for shape manipulation , 2007, SIGGRAPH 2007.

[42]  Hans-Peter Seidel,et al.  Real-Time Nonlinear Shape Interpolation , 2015, ACM Trans. Graph..

[43]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, ACM Trans. Graph..

[44]  Jovan Popović,et al.  Semantic deformation transfer , 2009, SIGGRAPH 2009.

[45]  Takeo Igarashi,et al.  As-rigid-as-possible shape manipulation , 2005, ACM Trans. Graph..

[46]  Leonidas J. Guibas,et al.  Robust single-view geometry and motion reconstruction , 2009, ACM Trans. Graph..

[47]  Lin Gao,et al.  A Data‐Driven Approach to Realistic Shape Morphing , 2013, Comput. Graph. Forum.

[48]  Matthias Zwicker,et al.  Mesh-based inverse kinematics , 2005, ACM Trans. Graph..

[49]  Leonidas J. Guibas,et al.  Map-based exploration of intrinsic shape differences and variability , 2013, ACM Trans. Graph..

[50]  Bo Fu,et al.  Quality Dynamic Human Body Modeling Using a Single Low-Cost Depth Camera , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[52]  Hans-Peter Seidel,et al.  A Statistical Model of Human Pose and Body Shape , 2009, Comput. Graph. Forum.

[53]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[54]  Jinxiang Chai,et al.  Accurate realtime full-body motion capture using a single depth camera , 2012, ACM Trans. Graph..

[55]  Mark Pauly,et al.  Realtime performance-based facial animation , 2011, ACM Trans. Graph..

[56]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[57]  Kun Zhou,et al.  Subspace gradient domain mesh deformation , 2006, ACM Trans. Graph..

[58]  Casey Muratori,et al.  Errors and Omissions in Marc Alexa ’ s “ Linear Combination of Transformations ” , 2003 .