Structural basis for high-affinity fluorophore binding and activation by RNA Mango

Genetically encoded fluorescent protein tags revolutionized proteome studies, while the lack of intrinsically fluorescent RNAs has hindered transcriptome exploration. Among several RNA-fluorophore complexes that potentially address this problem, RNA Mango has an exceptionally high affinity for its thiazole orange (TO)-derived fluorophore, TO1-Biotin (Kd ~3 nM), and in complex with related ligands, is one of the most red-shifted fluorescent macromolecular tags known. To elucidate how this small aptamer exhibits such properties, which make it well suited for studying low-copy cellular RNAs, we determined its 1.7 Å resolution co-crystal structure. Unexpectedly, the entire ligand, including TO, biotin, and the linker connecting them, abuts one of the near-planar faces of the three-tiered G-quadruplex. The two heterocycles of TO are held in place by two loop adenines and make a 45° angle with respect to each other. Minimizing this angle would increase quantum yield and further improve this tool for in vivo RNA visualization.

[1]  Samie R. Jaffrey,et al.  A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat RNA , 2013, Nature Methods.

[2]  C. Wilson,et al.  2.8 A crystal structure of the malachite green aptamer. , 2000, Journal of molecular biology.

[3]  S. Kelley,et al.  Thiazole orange-peptide conjugates: sensitivity of DNA binding to chemical structure. , 2004, Organic letters.

[4]  I. Tinoco,et al.  Use of ultra stable UNCG tetraloop hairpins to fold RNA structures: thermodynamic and spectroscopic applications. , 1995, Nucleic acids research.

[5]  V. Szalai,et al.  Fluorescence of unmodified oligonucleotides: A tool to probe G‐quadruplex DNA structure , 2009, Biopolymers.

[6]  M. Kubista,et al.  The interactions between the fluorescent dye thiazole orange and DNA. , 1998, Biopolymers.

[7]  T. Cech,et al.  Monovalent cation-induced structure of telomeric DNA: The G-quartet model , 1989, Cell.

[8]  C. Kwok,et al.  Effect of loop sequence and loop length on the intrinsic fluorescence of G-quadruplexes. , 2013, Biochemistry.

[9]  R. Tsien,et al.  Aptamers switch on fluorescence of triphenylmethane dyes. , 2003, Journal of the American Chemical Society.

[10]  Zhizhi Wang,et al.  Streptavidin and its biotin complex at atomic resolution. , 2011, Acta crystallographica. Section D, Biological crystallography.

[11]  J. Berglund,et al.  Utilizing the GAAA tetraloop/receptor to facilitate crystal packing and determination of the structure of a CUG RNA helix. , 2012, Biochemistry.

[12]  S. Jaffrey,et al.  RNA Mimics of Green Fluorescent Protein , 2011, Science.

[13]  J. Piccirilli,et al.  A G-Quadruplex-Containing RNA Activates Fluorescence in a GFP-Like Fluorophore , 2014, Nature chemical biology.

[14]  S. McKenna,et al.  Fluorophore ligand binding and complex stabilization of the RNA Mango and RNA Spinach aptamers , 2016, RNA.

[15]  M. Maroncelli,et al.  Steady-State and Time-Resolved Studies into the Origin of the Intrinsic Fluorescence of G-Quadruplexes. , 2016, The journal of physical chemistry. B.

[16]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[17]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[18]  C. Wilson,et al.  Laser-mediated, site-specific inactivation of RNA transcripts. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Dipankar Sen,et al.  A sodium-potassium switch in the formation of four-stranded G4-DNA , 1990, Nature.

[20]  Howard Fb,et al.  Poly(inosinic acid) helices: essential chelation of alkali metal ions in the axial channel. , 1982 .

[21]  E. Westhof,et al.  Geometric nomenclature and classification of RNA base pairs. , 2001, RNA.

[22]  Catherine A. Wakeman,et al.  Insights into metalloregulation by M-box riboswitch RNAs via structural analysis of manganese-bound complexes. , 2011, Journal of molecular biology.

[23]  I. Tinoco,et al.  Absorbance melting curves of RNA. , 1989, Methods in enzymology.

[24]  J. Darnell,et al.  Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction , 2011, Nature Structural &Molecular Biology.

[25]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[26]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[27]  D. Davies,et al.  Helix formation by guanylic acid. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[28]  F. Michel,et al.  Frequent use of the same tertiary motif by self‐folding RNAs. , 1995, The EMBO journal.

[29]  Randy J. Read,et al.  Phenix - a comprehensive python-based system for macromolecular structure solution , 2012 .

[30]  J. Wendoloski,et al.  Structural origins of high-affinity biotin binding to streptavidin. , 1989, Science.

[31]  Sarah W. Burge,et al.  Quadruplex DNA: sequence, topology and structure , 2006, Nucleic acids research.

[32]  Julie L. Fiore,et al.  An RNA folding motif: GNRA tetraloop–receptor interactions , 2013, Quarterly Reviews of Biophysics.

[33]  Taekjip Ha,et al.  Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. , 2013, Journal of the American Chemical Society.

[34]  A. Ferré-D’Amaré,et al.  Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. , 2008, Chemistry & biology.

[35]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[36]  Soojin Lim,et al.  NIR dyes for bioimaging applications. , 2010, Current opinion in chemical biology.

[37]  C. Wilson,et al.  The 1.3 A crystal structure of a biotin-binding pseudoknot and the basis for RNA molecular recognition. , 2000, Journal of molecular biology.

[38]  Dinshaw J. Patel,et al.  Crystal structure reveals specific recognition of a G-quadruplex RNA by a β-turn in the RGG motif of FMRP , 2015, Proceedings of the National Academy of Sciences.

[39]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Davidson,et al.  The fluorescent protein revolution , 2014 .

[41]  A. Ferré-D’Amaré,et al.  Structural basis for activity of highly efficient RNA mimics of green fluorescent protein , 2014, Nature Structural &Molecular Biology.

[42]  Sylvie Maurin,et al.  Photochemical properties of Spinach and its use in selective imaging , 2013 .

[43]  A. Phan,et al.  Following G‐quadruplex formation by its intrinsic fluorescence , 2011, FEBS letters.

[44]  J. L. Smith,et al.  Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[45]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[46]  E Westhof,et al.  Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. , 1994, Journal of molecular biology.

[47]  Paul A. Wiggins,et al.  RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. , 2014, ACS chemical biology.