Ultrathin and stable AgAu alloy nanowires

[1]  K. Koyasu,et al.  Surface plasmon resonance in gold ultrathin nanorods and nanowires. , 2014, Journal of the American Chemical Society.

[2]  Karren L. More,et al.  Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces , 2014, Science.

[3]  D. Bellet,et al.  Flexible transparent conductive materials based on silver nanowire networks: a review , 2013, Nanotechnology.

[4]  Zhaoying Zhou,et al.  One-dimensional nano-interconnection formation. , 2013, Small.

[5]  Shuhong Yu,et al.  Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. , 2013, Angewandte Chemie.

[6]  X. Lou,et al.  Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. , 2013, Journal of the American Chemical Society.

[7]  Edward H. Sargent,et al.  Self‐Assembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells , 2013, Advanced materials.

[8]  Shuhong Yu,et al.  Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications. , 2013, Accounts of chemical research.

[9]  Charles M. Lieber,et al.  Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. , 2013, Nano letters.

[10]  A. Fontcuberta i Morral,et al.  Single-nanowire solar cells beyond the Shockley–Queisser limit , 2013, Nature Photonics.

[11]  Peter Nordlander,et al.  Noble metal nanowires: from plasmon waveguides to passive and active devices. , 2012, Accounts of chemical research.

[12]  Jingguang G. Chen,et al.  Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. , 2012, Chemical reviews.

[13]  Yadong Li,et al.  Ultrathin Au-Ag bimetallic nanowires with Coulomb blockade effects. , 2011, Chemical communications.

[14]  Eugenia Kumacheva,et al.  Self-assembly of inorganic nanorods. , 2011, Chemical Society reviews.

[15]  Jianbo Wu,et al.  Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. , 2011, Nano letters.

[16]  C. Murray,et al.  Size- and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. , 2010, Angewandte Chemie.

[17]  Sven Barth,et al.  Synthesis and applications of one-dimensional semiconductors , 2010 .

[18]  Yugang Sun,et al.  Silver nanowires--unique templates for functional nanostructures. , 2010, Nanoscale.

[19]  P. Bohn,et al.  Electrochemical control of stability and restructuring dynamics in Au-Ag-Au and Au-Cu-Au bimetallic atom-scale junctions. , 2010, ACS nano.

[20]  Guoding Xu,et al.  Optical properties of the Au–Ag alloy nanowire coated with an anisotropic shell , 2010 .

[21]  Daniel Josell,et al.  Size-Dependent Resistivity in Nanoscale Interconnects , 2009 .

[22]  H. Okamoto,et al.  Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures , 2009 .

[23]  D. Goodman,et al.  Synthesis of CuPt nanorod catalysts with tunable lengths. , 2009, Journal of the American Chemical Society.

[24]  L. Liz‐Marzán,et al.  Synthesis of flexible, ultrathin gold nanowires in organic media. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[25]  E. Leiva,et al.  When do nanowires break? A model for the theoretical study of the long-term stability of monoatomic nanowires , 2008 .

[26]  Xiaofeng Zhang,et al.  Sub-two nanometer single crystal Au nanowires. , 2008, Nano letters.

[27]  Charles M. Lieber,et al.  Ultrathin Au nanowires and their transport properties. , 2008, Journal of the American Chemical Society.

[28]  Younan Xia,et al.  Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. , 2008, Journal of the American Chemical Society.

[29]  Umasankar Yogeswaran,et al.  A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material , 2008, Sensors.

[30]  P. Jain,et al.  Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. , 2007, Nanomedicine.

[31]  N. Ravishankar,et al.  Ultrafine Single‐Crystalline Gold Nanowire Arrays by Oriented Attachment , 2007 .

[32]  M. Toimil-Molares,et al.  Morphological evolution of Au nanowires controlled by Rayleigh instability , 2006 .

[33]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[34]  Mo Li,et al.  Nucleation and melting from nanovoids. , 2006, Nano letters.

[35]  Harold S. Park,et al.  On the thermomechanical deformation of silver shape memory nanowires , 2006 .

[36]  Hristina Petrova,et al.  On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. , 2006, Physical chemistry chemical physics : PCCP.

[37]  M. Ford,et al.  Melting in small gold clusters: a density functional molecular dynamics study , 2006 .

[38]  Christoph Dellago,et al.  Surface-driven bulk reorganization of gold nanorods. , 2005, Nano letters.

[39]  Christian Dahmen,et al.  Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering , 2004 .

[40]  K. Koga,et al.  Size- and temperature-dependent structural transitions in gold nanoparticles. , 2004, Physical review letters.

[41]  Sang-Ho Cha,et al.  Preparation of Gold Nanowires and Nanosheets in Bulk Block Copolymer Phases under Mild Conditions , 2004 .

[42]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[43]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[44]  A. Eichler CO oxidation on transition metal surfaces: reaction rates from first principles , 2002 .

[45]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[46]  Catherine J. Murphy,et al.  Seed‐Mediated Growth Approach for Shape‐Controlled Synthesis of Spheroidal and Rod‐like Gold Nanoparticles Using a Surfactant Template , 2001 .

[47]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[48]  M. El-Sayed Spectroscopic determination of the melting energy of a gold nanorod , 2001 .

[49]  P. Hu,et al.  CO oxidation on Pd(100) and Pd(111): a comparative study of reaction pathways and reactivity at low and medium coverages. , 2001, Journal of the American Chemical Society.

[50]  M. El-Sayed,et al.  How Does a Gold Nanorod Melt , 2000 .

[51]  W. Cai,et al.  Composition modulation of optical absorption in AgxAu1−x alloy nanocrystals in situ formed within pores of mesoporous silica , 2000 .

[52]  Jean-Claude Weeber,et al.  Plasmon polaritons of metallic nanowires for controlling submicron propagation of light , 1999 .

[53]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[54]  M. El-Sayed,et al.  Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence , 1999 .

[55]  J. Pendry,et al.  Silver-filled carbon nanotubes used as spectroscopic enhancers , 1998, cond-mat/9805375.

[56]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.

[57]  W. Jesser,et al.  Thermodynamic theory of size dependence of melting temperature in metals , 1977, Nature.

[58]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[59]  B. Nikoobakht,et al.  種結晶を媒介とした成長法を用いた金ナノロッド(NR)の調製と成長メカニズム , 2003 .

[60]  Arun S. Mujumdar,et al.  Introduction to Surface Chemistry and Catalysis , 1994 .