Experimental and DFT Computational Study of β-Me and β-H Elimination Coupled with Proton Transfer: From Amides to Enamides in Cp*2MX (M = La, Ce)

The thermal rearrangement of the f-block metallocene amides Cp*2MNR1R2, where R1 is CHMe2, R2 is either CHMe2 or CMe3, and M is either La or Ce, to the corresponding enamides Cp*2MNR1[C(Me)═CH2] and H2 or CH4, respectively, occurs when the solid amides are heated in sealed evacuated ampules at 160–180 °C for 1–2 weeks. The net reaction is a β-H or β-Me elimination followed by a γ-abstraction of a proton at the group from which the β-elimination occurs. When R1 is either SiMe3 or SiMe2CMe3 and R2 is CMe3, the enamide Cp*2MNR1[C(Me)═CH2] is isolated, the result of β-Me elimination, but when R2 is CHMe2, the enamides Cp*2MNR1[C(Me)═CH2] and Cp*2NR1[C(H)═CH2] are isolated, the result of β-H and β-Me elimination. In the latter cases, both enamides are formed in similar amounts and the rates of the β-H and β-Me elimination steps must be similar. A two-step mechanism is developed from DFT calculations. The first step is migration of a hydride or a methyl anion to the Cp*2M fragment, forming M–H or M–Me bonds as ...

[1]  S. Dutta,et al.  β-Alkyl Elimination: Fundamental Principles and Some Applications. , 2016, Chemical reviews.

[2]  P. Budzelaar,et al.  [Cp2TiCH2CH2(SiEt2CHMe2)]+, an Alkyl-titanocene(IV) Complex Containing an Unconventional Ti←C(β)-Si Mode of Bonding , 2015 .

[3]  Conrad A. P. Goodwin,et al.  Homoleptic Trigonal Planar Lanthanide Complexes Stabilized by Superbulky Silylamide Ligands , 2015 .

[4]  R. Andersen,et al.  A new X-ray crystal structure (100 K) of Yb[N(SiMe3)2]2[Me2PCH2CH2PMe2] ☆ , 2014 .

[5]  M. Pink,et al.  Three-coordinate NiII: tracing the origin of an unusual, facile Si-C(sp3) bond cleavage in [(tBu2PCH2SiMe2)2N]Ni+. , 2011, Journal of the American Chemical Society.

[6]  J. Hartwig Organotransition Metal Chemistry: From Bonding to Catalysis , 2009 .

[7]  E. Álvarez,et al.  Decomposition of Methylnickel(II) Amido, Alkoxo, and Alkyl Complexes by β-Hydrogen Elimination: A Comparative Study† , 2009 .

[8]  R. McDonald,et al.  Nickel and palladium silyl pincer complexes: unusual structural rearrangements that involve reversible Si-C(sp(3)) and Si-C(sp(2)) bond activation. , 2009, Angewandte Chemie.

[9]  J. Ziller,et al.  Reactivity of (C5Me5)3LaL(x) complexes: synthesis of a tris(pentamethylcyclopentadienyl) complex with two additional ligands, (C5Me5)3La(NCCMe3)2. , 2009, Journal of the American Chemical Society.

[10]  J. Ziller,et al.  Planar trimethylenemethane dianion chemistry of lanthanide metallocenes: synthesis, structure, density functional theory analysis, and reactivity of [(C5Me5)2Ln]2[mu-eta3:eta3-C(CH2)(3] Complexes. , 2006, Journal of the American Chemical Society.

[11]  Ping Yang,et al.  Reinvestigation of the Modes of Chain Transfer during Propene Polymerization by the Cp*2Zr Catalyst System , 2005 .

[12]  Ping Yang,et al.  Mechanistic Study of β-Methyl and β-Hydrogen Elimination in the Zirconocene Compounds Cp‘2ZrR(μ-CH3)B(C6F5)3 (Cp‘ = Cp, Cp*; R = CH2CMe3, CH2CHMe2) , 2005 .

[13]  J. Bercaw,et al.  Experimental Evidence for γ-Agostic Assistance in β-Methyl Elimination, the Microscopic Reverse of α-Agostic Assistance in the Chain Propagation Step of Olefin Polymerization , 2005 .

[14]  Patricio E. Romero,et al.  Direct observation of a 14-electron ruthenacyclobutane relevant to olefin metathesis. , 2005, Journal of the American Chemical Society.

[15]  S. Blanksby,et al.  Bond dissociation energies of organic molecules. , 2003, Accounts of chemical research.

[16]  O. Eisenstein,et al.  γ Agostic C–H or β agostic Si–C bonds in La{CH(SiMe3)2}3? A DFT study of the role of the ligand , 2003 .

[17]  M. Tafipolsky,et al.  β-SiH agostic bonding in sterically crowded lanthanidocene silylamide complexes , 2002 .

[18]  W. Hieringer,et al.  C2-Symmetric Ansa-Lanthanidocene Complexes. Theoretical Evidence for a Symmetric Ln···(SiH) β-Diagostic Interaction , 2000 .

[19]  T. Marks,et al.  Metal-Alkyl Group Effects on the Thermodynamic Stability and Stereochemical Mobility of B(C6F5)3-Derived Zr and Hf Metallocenium Ion-Pairs , 2000 .

[20]  W. Hieringer,et al.  C2-Symmetric ansa-Lanthanidocene Complexes. Synthesis via Silylamine Elimination and β-SiH Agostic Rigidity , 2000 .

[21]  L. Brammer,et al.  C−H Bonds Are Not Elongated by Coordination to Lanthanide Metals: Single-Crystal Neutron Diffraction Structures of (C5Me5)Y(OC6H3tBu2)CH(SiMe3)2 at 20 K and (C5Me5)La{CH(SiMe3)2}2 at 15 K , 1999 .

[22]  K. McNeill,et al.  C−C and C−H Bond Activation at Ruthenium(II): The Stepwise Degradation of a Neopentyl Ligand to a Trimethylenemethane Ligand , 1997 .

[23]  Á. Monge,et al.  Formation of η2-Iminoacyls, η3-Azaallyls, and Heterometallacycles during the Rearrangements of Methyl Complexes of Molybdenum and Tungsten Containing Isocyanide Ligands , 1997 .

[24]  E. Carmona,et al.  Indenylmethyl-molybdenum and -tungsten compounds containing isocyanideligands. Formation and study of isomericη2-iminoacyls andη3-1-azaallyls , 1997 .

[25]  J. Hartwig Directly-Observed β-Hydrogen Elimination of a Late Transition Metal Amido Complex and Unusual Fate of Imine Byproducts , 1996 .

[26]  A. Horton Direct Observation of β-Methyl Elimination in Cationic Neopentyl Complexes: Ligand Effects on the Reversible Elimination of Isobutene , 1996 .

[27]  W. Lukens,et al.  A π-Donor Spectrochemical Series for X in (Me5C5)2TiX, and β-Agostic Interactions in X = Et and N(Me)Ph , 1996 .

[28]  G. Kociok‐Köhn,et al.  Organometallic compounds of the lanthanides XCVII. Synthesis and crystal structures of monomeric bis(ethyltetramethylcyclopentadienyl) amide and alkyl derivatives of the lanthanides , 1995 .

[29]  L. Esser,et al.  Synthesis, Structure, and Reactivity of Organometallic .pi.-Complexes of the Rare Earths in the Oxidation State Ln3+ with Aromatic Ligands , 1995 .

[30]  K. McNeill,et al.  Interconversion of a 3,3-Dimethylruthenacyclobutane and a Methyl(2-methallyl)ruthenium Complex: The First Direct Observation of Reversible .beta.-Methyl Elimination/Migratory Insertion , 1995 .

[31]  Z. Rappoport The chemistry of enamines , 1994 .

[32]  D. Swenson,et al.  Cationic Zirconium and Hafnium Isobutyl Complexes as Models for Intermediates in Metallocene-Catalyzed Propylene Polymerizations. Detection of an .alpha.-Agostic Interaction in (C5Me5)2Hf(CH2CHMe2)(PMe3)+ , 1994 .

[33]  J. Bercaw,et al.  Competitive Chain Transfer by β-Hydrogen and β-Methyl Elimination for a Model Ziegler-Natta Olefin Polymerization System [Me_2Si(η^5-C_5Me_4)_2]Sc{CH_2CH(CH_3)_2}(PMe_3) , 1994 .

[34]  J. Ziller,et al.  Investigation of organolanthanide-based carbon-carbon bond formation: synthesis, structure, and coupling reactivity of organolanthanide alkynide complexes, including the unusual structures of the trienediyl complex [(C5Me5)2Sm]2[.mu.-.eta.2:.eta.2-Ph(CH2)2C:C:C:C-(CH2)2Ph] and the unsolvated alkynid , 1993 .

[35]  Tiziana Fiorani,et al.  Olefin polymerization at bis(pentamethylcyclopentadienyl)zirconium and -hafnium centers: chain-transfer mechanisms , 1992 .

[36]  J. Hartwig,et al.  Oxygen- and carbon-bound ruthenium enolates: migratory insertion, reductive elimination, .beta.-hydrogen elimination, and cyclometalation reactions , 1991 .

[37]  J. Hartwig,et al.  Mechanism of the carbon-carbon cleavage of acetone by the ruthenium benzyne complex (PMe3)4Ru(.eta.2-C6H4): formation and reactivity of an oxametallacyclobutane complex , 1990 .

[38]  M. Thompson,et al.  Ethylene insertion and .beta.-hydrogen elimination for permethylscandocene alkyl complexes. A study of the chain propagation and termination steps in Ziegler-Natta polymerization of ethylene , 1990 .

[39]  H. J. Heeres,et al.  On the synthesis of monopentamethylcyclopentadienyl derivatives of yttrium, lanthanum, and cerium , 1989 .

[40]  Yitzhak Apeloig,et al.  The chemistry of organic silicon compounds , 1989 .

[41]  H. J. Heeres,et al.  Bis(pentamethylcyclopentadienyl) Complexes of Cerium(III). Crystal Structure of (C5Me5)2CeCH(SiMe3)2 , 1988 .

[42]  K. Morokuma,et al.  SiC agostic interaction with Ti: origin of alkenyl group distortion in Ti(C(SiH2CH3)=CH2)X2+. An ab initio MO study , 1988 .

[43]  P. L. Watson,et al.  Homogeneous Lanthanide Complexes as Polymerization and Oligomerization Catalysts: Mechanistic Studies , 1983 .

[44]  D. Roe,et al.  .beta.-Alkyl transfer in a lanthanide model for chain termination , 1982 .

[45]  R. Andersen,et al.  Tertiary phosphine complexes of the f-block metals. Crystal structure of Yb[N(SiMe3)2]2[Me2PCH2CH2PMe2]: evidence for a ytterbium-.gamma.-carbon interaction , 1982 .

[46]  R. Andersen,et al.  Pentamethylcyclopentadienyl derivatives of the trivalent lanthanide elements neodymium, samarium, and ytterbium , 1981 .

[47]  S. J. Simpson,et al.  Preparation and hydrogen-deuterium exchange of alkyl and hydride bis(trimethylsilyl)amido derivatives of the actinide elements , 1981 .

[48]  S. J. Simpson,et al.  Hydrogen-deuterium exchange: perdeuteriohydridotris(hexamethyldisilylamido)thorium(IV) and -uranium(IV) , 1979 .

[49]  F. Albert Cotton,et al.  Dynamic Nuclear Magnetic Resonance Spectroscopy , 1975 .

[50]  K. Bar-Eli,et al.  A convenient method for obtaining free energies of activation by the coalescence temperature of an unequal doublet , 1970 .

[51]  W. Ollis,et al.  The study of the aromaticity and the rotational isomerism of 6-di-methylaminofulvenes by nuclear magnetic resonance spectroscopy , 1969 .