On a partition analog of the Cauchy-Davenport theorem

SummaryLet <InlineEquation><EquationSource=”tex”>G</EquationSource></InlineEquation> be a finite abelian group, and let <InlineEquation><EquationSource=”tex”>n</EquationSource></InlineEquation> be a positive integer. From the Cauchy-Davenport Theorem it follows that if <InlineEquation><EquationSource=”tex”>G</EquationSource></InlineEquation> is a cyclic group of prime order, then any collection of <InlineEquation><EquationSource=”tex”>n</EquationSource></InlineEquation> subsets <InlineEquation><EquationSource=”tex”>A_1,A_2,\ldots,A_n</EquationSource></InlineEquation> of <InlineEquation><EquationSource=”tex”>G</EquationSource></InlineEquation> satisfies <InlineEquation><EquationSource=”tex”>\bigg|\sum_{i=1}^n A_i\bigg| \ge \min \bigg\{|G|,\,\sum_{i=1}^n |A_i|-n+1\bigg\}.</EquationSource></InlineEquation> M.~Kneser generalized the Cauchy--Davenport Theorem for any abelian group. In this paper, we prove a sequence-partition analog of the Cauchy--Davenport Theorem along the lines of Kneser's Theorem. A particular case of our theorem was proved by J.~E. Olson in the context of the Erdős--Ginzburg--Ziv Theorem.

[1]  Yair Caro On zero-sum Ramsey numbers - stars , 1992, Discret. Math..

[2]  David J. Grynkiewicz,et al.  Monochromatic and Zero-Sum Sets of Nondecreasing Modified Diameter , 2006, Electron. J. Comb..

[3]  David J. Grynkiewicz,et al.  On the Intersection of two m-sets and the Erdos-Ginzburg-Ziv Theorem , 2007, Ars Comb..

[4]  Weidong Gao,et al.  Zero Sums in Abelian Groups , 1998, Comb. Probab. Comput..

[5]  Daniel Schaal,et al.  On a Variation of Schur Numbers , 2000, Graphs Comb..

[6]  Luis H. Gallardo,et al.  On a variant of the Erdős-Ginzburg-Ziv problem , 1999 .

[7]  Arie Bialostocki,et al.  On the Erdös-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings , 1992, Discret. Math..

[8]  Raphael Yuster,et al.  The characterization of zero-sum (mod 2) bipartite Ramsey numbers , 1998 .

[9]  Oscar Ordaz,et al.  On the Erdös-Ginzburg-Ziv theorem , 1996, Discret. Math..

[10]  M. Kneser,et al.  Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen , 1954 .

[11]  David J. Grynkiewicz,et al.  On some developments of the Erdős–Ginzburg–Ziv Theorem II , 2003 .

[12]  Yair Caro A linear upper bound in zero-sum Ramsey theory , 1994 .

[13]  Zoltán Füredi,et al.  On zero-trees , 1992, J. Graph Theory.

[14]  A. Ziv,et al.  Theorem in the Additive Number Theory , 2022 .

[15]  M. Kneser,et al.  Abschätzung der asymptotischen Dichte von Summenmengen , 1953 .

[16]  Yair Caro A Complete Characterization of the Zero-Sum (mod 2) Ramsey Numbers , 1994, J. Comb. Theory, Ser. A.

[17]  Y. Roditty,et al.  On zero-sum turan problems of Bialostocki and Dierker , 1992, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[18]  Paul D. Seymour,et al.  A simpler proof and a generalization of the zero-trees theorem , 1991, J. Comb. Theory, Ser. A.

[19]  Yair Caro,et al.  Zero-sum delta-systems and multiple copies of graphs , 1999, J. Graph Theory.

[20]  Melvyn B. Nathanson,et al.  Additive Number Theory , 1996 .

[21]  John E. Olson An addition theorem for finite Abelian groups , 1977 .

[22]  Arie Bialostocki,et al.  Zero Sum Trees: A Survey of Results and Open Problems , 1993 .

[23]  Yair Caro Zero-sum bipartite Ramsey numbers , 1993 .

[24]  Carl R. Yerger Monochromatic and Zero-Sum Sets of Nondecreasing Diameter , 2005 .

[25]  J. H. B. Kemperman,et al.  On small sumsets in an abelian group , 1960 .

[26]  Arie Bialostocki,et al.  On zero sum Ramsey numbers: Multiple copies of a graph , 1994, J. Graph Theory.

[27]  Yair Caro On zero-sum delta-systems and multiple copies of hypergraphs , 1991, J. Graph Theory.

[28]  Roger Crocker,et al.  A theorem in additive number theory , 1969 .

[29]  Yair Caro,et al.  Zero-sum problems - A survey , 1996, Discret. Math..

[30]  Heiko Harborth,et al.  Zero-Sum Ramsey Numbers modulo 3 , 1996, J. Comb. Theory, Ser. A.

[31]  Yair Caro,et al.  A zero-sum conjecture for trees , 1995, Ars Comb..

[32]  Yair Caro ON ZERO SUM RAMSEY NUMBERS—COMPLETE GRAPHS , 1992 .

[33]  David J. Grynkiewicz An extension of the Erdos-Ginzburg-Ziv Theorem to hypergraphs , 2005, Eur. J. Comb..

[34]  Yair Caro Binomial Coefficients and Zero-Sum Ramsey Numbers , 1997, J. Comb. Theory, Ser. A.

[35]  Harold Davenport,et al.  On the Addition of Residue Classes , 1935 .

[36]  David J. Grynkiewicz,et al.  On Four Colored Sets with Nondecreasing Diameter and the Erds-Ginzburg-Ziv Theorem , 2002, J. Comb. Theory, Ser. A.

[37]  Yair Caro On several variations of the turan and ramsey numbers , 1992, J. Graph Theory.

[38]  Daniel Schaal,et al.  A zero-sum theorem , 2003, J. Comb. Theory, Ser. A.

[39]  Noga Alon,et al.  On three zero-sum Ramsey-type problems , 1993, J. Graph Theory.

[40]  Oscar Ordaz,et al.  On a Combinatorial Theorem of Erdös, Ginzburg and Ziv , 1998, Comb. Probab. Comput..