Community detection in graphs

[1]  Allan Sly,et al.  Random graphs with a given degree sequence , 2010, 1005.1136.

[2]  Jonathan W. Berry,et al.  Tolerating the community detection resolution limit with edge weighting. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Mason A. Porter,et al.  Comparing Community Structure to Characteristics in Online Collegiate Social Networks , 2008, SIAM Rev..

[4]  Pascal Pons,et al.  Post-processing hierarchical community structures: Quality improvements and multi-scale view , 2006, Theor. Comput. Sci..

[5]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[6]  Tom A. B. Snijders,et al.  Social Network Analysis , 2011, International Encyclopedia of Statistical Science.

[7]  H. A. David Order Statistics , 2011, International Encyclopedia of Statistical Science.

[8]  Benjamin H. Good,et al.  Performance of modularity maximization in practical contexts. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  F. Radicchi,et al.  Statistical significance of communities in networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Charlotte M. Deane,et al.  The function of communities in protein interaction networks at multiple scales , 2009, BMC Systems Biology.

[11]  Sune Lehmann,et al.  Link communities reveal multiscale complexity in networks , 2009, Nature.

[12]  Youngdo Kim,et al.  Finding communities in directed networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Jean-Charles Delvenne,et al.  Stability of graph communities across time scales , 2008, Proceedings of the National Academy of Sciences.

[14]  Carl T. Bergstrom,et al.  Mapping Change in Large Networks , 2008, PloS one.

[15]  P. Ronhovde,et al.  Local resolution-limit-free Potts model for community detection. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  A. Wirth Correlation Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[17]  Charu C. Aggarwal,et al.  Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[18]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[19]  Jiawei Han,et al.  A Particle-and-Density Based Evolutionary Clustering Method for Dynamic Networks , 2009, Proc. VLDB Endow..

[20]  Armen E. Allahverdyan,et al.  Community detection with and without prior information , 2009, ArXiv.

[21]  R. Lambiotte,et al.  Line graphs, link partitions, and overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  E. Holmström,et al.  Modularity density of network community divisions , 2009 .

[23]  Ernesto Estrada,et al.  Communicability graph and community structures in complex networks , 2009, Appl. Math. Comput..

[24]  Huawei Shen,et al.  Quantifying and identifying the overlapping community structure in networks , 2009, 0905.2666.

[25]  Andrea Lancichinetti,et al.  Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  K. A. Samani,et al.  Eigenvectors of network complement reveal community structure more accurately , 2009 .

[27]  Juan Mei,et al.  Revealing network communities through modularity maximization by a contraction–dilation method , 2009 .

[28]  Wei Ren,et al.  Simple probabilistic algorithm for detecting community structure. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Yong-Yeol Ahn,et al.  Communities and Hierarchical Organization of Links in Complex Networks , 2009 .

[30]  M. Barber,et al.  Detecting network communities by propagating labels under constraints. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  François Fouss,et al.  Graph nodes clustering with the sigmoid commute-time kernel: A comparative study , 2009, Data Knowl. Eng..

[32]  Mason A. Porter,et al.  Communities in Networks , 2009, ArXiv.

[33]  Enhong Chen,et al.  Finding Community Structure Based on Subgraph Similarity , 2009, CompleNet.

[34]  Yiannis Kompatsiaris,et al.  Bridge Bounding: A Local Approach for Efficient Community Discovery in Complex Networks , 2009, 0902.0871.

[35]  Kevin E. Bassler,et al.  Improved community structure detection using a modified fine-tuning strategy , 2009, ArXiv.

[36]  Andreas Noack,et al.  Multi-level Algorithms for Modularity Clustering , 2008, SEA.

[37]  Pablo Jensen,et al.  Analysis of community structure in networks of correlated data. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  P. Mucha,et al.  Spectral tripartitioning of networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  P. Ronhovde,et al.  Multiresolution community detection for megascale networks by information-based replica correlations. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  E. N. Sawardecker,et al.  Detection of node group membership in networks with group overlap , 2008, 0812.1243.

[41]  Nick S. Jones,et al.  Dynamic communities in multichannel data: an application to the foreign exchange market during the 2007-2008 credit crisis. , 2008, Chaos.

[42]  V. Traag,et al.  Community detection in networks with positive and negative links. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  P. Pin,et al.  Assessing the relevance of node features for network structure , 2008, Proceedings of the National Academy of Sciences.

[44]  Jure Leskovec,et al.  Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters , 2008, Internet Math..

[45]  M. Mitrovic,et al.  Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Fabrizio Lillo,et al.  Correlation, Hierarchies, and Networks in Financial Markets , 2008, 0809.4615.

[47]  Pietro Liò,et al.  Towards real-time community detection in large networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Andreas Noack,et al.  Modularity clustering is force-directed layout , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Andrea Lancichinetti,et al.  Detecting the overlapping and hierarchical community structure in complex networks , 2008, 0802.1218.

[50]  V. Carchiolo,et al.  Extending the definition of modularity to directed graphs with overlapping communities , 2008, 0801.1647.

[51]  Claudio Castellano,et al.  Community Structure in Graphs , 2007, Encyclopedia of Complexity and Systems Science.

[52]  Srinivasan Parthasarathy,et al.  An event-based framework for characterizing the evolutionary behavior of interaction graphs , 2007, KDD '07.

[53]  Steve Gregory,et al.  Finding Overlapping Communities Using Disjoint Community Detection Algorithms , 2009, CompleNet.

[54]  S. Borgatti,et al.  Analyzing Clique Overlap , 2009 .

[55]  Robert A. Meyers,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[56]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[57]  Ying Wang,et al.  Quantitative Function for Community Detection , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  R. Lambiotte,et al.  Random Walks, Markov Processes and the Multiscale Modular Organization of Complex Networks , 2008, IEEE Transactions on Network Science and Engineering.

[59]  Christophe Ambroise,et al.  Fast online graph clustering via Erdös-Rényi mixture , 2008, Pattern Recognit..

[60]  Jun Yu,et al.  Adaptive clustering algorithm for community detection in complex networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Mao-Bin Hu,et al.  Detect overlapping and hierarchical community structure in networks , 2008, ArXiv.

[62]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[63]  José J. Ramasco,et al.  Who is keeping you in that community? , 2008, ArXiv.

[64]  Muhittin Mungan,et al.  Stability of maximum-likelihood-based clustering methods: exploring the backbone of classifications , 2008, 0809.1398.

[65]  Mason A. Porter,et al.  Community Structure in Online Collegiate Social Networks , 2008 .

[66]  Jure Leskovec,et al.  Microscopic evolution of social networks , 2008, KDD.

[67]  Amedeo Caflisch,et al.  Multistep greedy algorithm identifies community structure in real-world and computer-generated networks , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  J M Buldú,et al.  Synchronization interfaces and overlapping communities in complex networks. , 2008, Physical review letters.

[69]  P. Csermely Creative elements: network-based predictions of active centres in proteins and cellular and social networks. , 2008, Trends in biochemical sciences.

[70]  M. Krawczyk Differential equations as a tool for community identification. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Tiejun Li,et al.  Optimal partition and effective dynamics of complex networks , 2008, Proceedings of the National Academy of Sciences.

[72]  Ming Ouyang,et al.  A vector partitioning approach to detecting community structure in complex networks , 2008, Comput. Math. Appl..

[73]  F. Radicchi,et al.  Benchmark graphs for testing community detection algorithms. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  Kristina Lerman,et al.  Community Detection Using a Measure of Global Influence , 2008, SNAKDD.

[75]  A. Vázquez Bayesian approach to clustering real value, categorical and network data: solution via variational methods , 2008, 0805.2689.

[76]  J. Kumpula,et al.  Sequential algorithm for fast clique percolation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[78]  B. Wellman The Development of Social Network Analysis: A Study in the Sociology of Science , 2008 .

[79]  Bin Wu,et al.  Overlapping Community Detection in Bipartite Networks , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[80]  J. Kumpula,et al.  Detecting modules in dense weighted networks with the Potts method , 2008, 0804.3457.

[81]  Yun Chi,et al.  Facetnet: a framework for analyzing communities and their evolutions in dynamic networks , 2008, WWW.

[82]  Falk Schreiber,et al.  Analysis of Biological Networks , 2008 .

[83]  J. Kertész,et al.  On the equivalence of the label propagation method of community detection and a Potts model approach , 2008, 0803.2804.

[84]  M. Barber,et al.  Searching for Communities in Bipartite Networks , 2008, 0803.2854.

[85]  P. Ronhovde,et al.  A highly accurate and resolution-limit-free Potts model for community detection , 2008 .

[86]  A. Coolen,et al.  Entropies of complex networks with hierarchically constrained topologies. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  William Y. C. Chen,et al.  Community Structures of Networks , 2008, Math. Comput. Sci..

[88]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[89]  Peng Zhang,et al.  Comparative definition of community and corresponding identifying algorithm. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  Jiming Liu,et al.  Discovering global network communities based on local centralities , 2008, TWEB.

[91]  S. Forrest,et al.  A dual assortative measure of community structure , 2008, 0801.3290.

[92]  Alexei Vazquez,et al.  Population stratification using a statistical model on hypergraphs , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  Amedeo Caflisch,et al.  Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  Michele Leone,et al.  (Un)detectable cluster structure in sparse networks. , 2007, Physical review letters.

[95]  J. Ramasco,et al.  Inversion method for content-based networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[96]  Z. Di,et al.  Community detection by signaling on complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  S. Lehmann,et al.  Biclique communities. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  Vladimir Gudkov,et al.  Community Detection in Complex Networks by Dynamical Simplex Evolution , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  Z. Di,et al.  Clustering coefficient and community structure of bipartite networks , 2007, 0710.0117.

[100]  A. Arenas,et al.  Motif-based communities in complex networks , 2007, 0710.0059.

[101]  E A Leicht,et al.  Community structure in directed networks. , 2007, Physical review letters.

[102]  Chris H Wiggins,et al.  Bayesian approach to network modularity. , 2007, Physical review letters.

[103]  M. Newman,et al.  Robustness of community structure in networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[104]  David Gfeller,et al.  Spectral coarse graining and synchronization in oscillator networks. , 2007, Physical review letters.

[105]  Amanda L. Traud,et al.  Community Structure in Congressional Cosponsorship Networks , 2007, 0708.1191.

[106]  T. Nepusz,et al.  Fuzzy communities and the concept of bridgeness in complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[107]  Ernesto Estrada,et al.  Communicability in complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[109]  James P. Bagrow Evaluating local community methods in networks , 2007, 0706.3880.

[110]  Weixiong Zhang,et al.  Identifying network communities with a high resolution. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  Alex Arenas,et al.  Analysis of the structure of complex networks at different resolution levels , 2007, physics/0703218.

[112]  Derek Greene,et al.  Community Finding in Large Social Networks Through Problem Decomposition , 2008 .

[113]  C. Bernido,et al.  Stochastic and quantum dynamics of biomolecular systems : proceedings of the 5th Jagna International Workshop, Jagna, Bohol, Philippines 3-5 January 2008 , 2008 .

[114]  Christos Faloutsos,et al.  Random walk with restart: fast solutions and applications , 2008, Knowledge and Information Systems.

[115]  Lazaros G. Papageorgiou,et al.  Finding community structures in complex networks using mixed integer optimisation , 2007 .

[116]  Kevin H. Knuth,et al.  Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 27th International Workshop on Bayesian Inference and Maximum Entropy Methods , 2007 .

[117]  C. J. Rhodes,et al.  Social network topology: a Bayesian approach , 2007, J. Oper. Res. Soc..

[118]  T. Snijders,et al.  Bayesian inference for dynamic social network data , 2007 .

[119]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[120]  Inderjit S. Dhillon,et al.  Weighted Graph Cuts without Eigenvectors A Multilevel Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[121]  Weixiong Zhang,et al.  An Efficient Spectral Algorithm for Network Community Discovery and Its Applications to Biological and Social Networks , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[122]  Philip S. Yu,et al.  Community Learning by Graph Approximation , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[123]  Jonathan W. Berry,et al.  Community Detection via Facility Location , 2007, 0710.3800.

[124]  Wei Ren,et al.  A Simple Probabilistic Algorithm for Detecting Community Structure in Social Networks , 2007, 0710.3422.

[125]  David Kempe,et al.  Modularity-maximizing graph communities via mathematical programming , 2007, 0710.2533.

[126]  Stan Matwin,et al.  Proceedings of the 11th European conference on Principles and Practice of Knowledge Discovery in Databases , 2007 .

[127]  Steve Gregory,et al.  An Algorithm to Find Overlapping Community Structure in Networks , 2007, PKDD.

[128]  Réka Albert,et al.  Near linear time algorithm to detect community structures in large-scale networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[129]  M. Krawczyk,et al.  Communities in networks - a continuous approach , 2007, 0709.0923.

[130]  Xiaowei Xu,et al.  A Novel Similarity-Based Modularity Function for Graph Partitioning , 2007, DaWaK.

[131]  Pan Hui,et al.  Distributed community detection in delay tolerant networks , 2007, MobiArch '07.

[132]  Philip S. Yu,et al.  GraphScope: parameter-free mining of large time-evolving graphs , 2007, KDD '07.

[133]  Yun Chi,et al.  Evolutionary spectral clustering by incorporating temporal smoothness , 2007, KDD '07.

[134]  Douglas R. White,et al.  Role models for complex networks , 2007, 0708.0958.

[135]  Satu Elisa Schaeffer,et al.  Graph Clustering , 2017, Encyclopedia of Machine Learning and Data Mining.

[136]  G. Bianconi The entropy of randomized network ensembles , 2007, 0708.0153.

[137]  M. Barber Modularity and community detection in bipartite networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[138]  Roger Guimerà,et al.  A network-based method for target selection in metabolic networks , 2007, Bioinform..

[139]  Guido Caldarelli,et al.  Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science , 2007 .

[140]  David D. Jensen,et al.  Graph clustering with network structure indices , 2007, ICML '07.

[141]  János Kertész,et al.  Noise and Stochastics in Complex Systems and Finance , 2007 .

[142]  Dorothea Wagner,et al.  Significance-Driven Graph Clustering , 2007, AAIM.

[143]  David Gfeller,et al.  Spectral coarse graining of complex networks. , 2007, Physical review letters.

[144]  J. Reichardt,et al.  Clustering of sparse data via network communities—a prototype study of a large online market , 2007 .

[145]  Jari Saramäki,et al.  Limited resolution and multiresolution methods in complex network community detection , 2007, SPIE International Symposium on Fluctuations and Noise.

[146]  Guojun Gan,et al.  Data Clustering: Theory, Algorithms, and Applications (ASA-SIAM Series on Statistics and Applied Probability) , 2007 .

[147]  Santo Fortunato,et al.  Quality functions in community detection , 2007, SPIE International Symposium on Fluctuations and Noise.

[148]  Xin Liu,et al.  Effective Algorithm for Detecting Community Structure in Complex Networks Based on GA and Clustering , 2007, International Conference on Computational Science.

[149]  François Fouss,et al.  Graph Nodes Clustering Based on the Commute-Time Kernel , 2007, PAKDD.

[150]  Roger Guimerà,et al.  Extracting the hierarchical organization of complex systems , 2007, Proceedings of the National Academy of Sciences.

[151]  Marco Pellegrini,et al.  Extraction and classification of dense communities in the web , 2007, WWW '07.

[152]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[153]  M. Meilă Comparing clusterings---an information based distance , 2007 .

[154]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[155]  T. Vicsek,et al.  Weighted network modules , 2007, cond-mat/0703706.

[156]  N. Alves Unveiling community structures in weighted networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[157]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[158]  A. Raftery,et al.  Model‐based clustering for social networks , 2007 .

[159]  Ken Wakita,et al.  Finding community structure in mega-scale social networks: [extended abstract] , 2007, WWW '07.

[160]  Sergio Gómez,et al.  Size reduction of complex networks preserving modularity , 2007, ArXiv.

[161]  S. Lehmann,et al.  Deterministic modularity optimization , 2007, physics/0701348.

[162]  Shihua Zhang,et al.  Identification of overlapping community structure in complex networks using fuzzy c-means clustering , 2007 .

[163]  Yoshi Fujiwara,et al.  A Gap in the Community-Size Distribution of a Large-Scale Social Networking Site , 2007, ArXiv.

[164]  R. Guimerà,et al.  Module identification in bipartite and directed networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[165]  Rajeev Sangal,et al.  Proceedings of the 20th international joint conference on Artifical intelligence , 2007 .

[166]  Marco Gori,et al.  ItemRank: A Random-Walk Based Scoring Algorithm for Recommender Engines , 2007, IJCAI.

[167]  Carl T. Bergstrom,et al.  An information-theoretic framework for resolving community structure in complex networks , 2006, Proceedings of the National Academy of Sciences.

[168]  E A Leicht,et al.  Mixture models and exploratory analysis in networks , 2006, Proceedings of the National Academy of Sciences.

[169]  A. Arenas,et al.  Synchronization and modularity in complex networks , 2006, cond-mat/0610726.

[170]  Z. Di,et al.  Accuracy and precision of methods for community identification in weighted networks , 2006, physics/0607271.

[171]  V. Latora,et al.  Detecting complex network modularity by dynamical clustering. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[172]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[173]  J. Reichardt,et al.  Partitioning and modularity of graphs with arbitrary degree distribution. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[174]  Jon Kleinberg,et al.  KDD '07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining , 2007, KDD 2007.

[175]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[176]  Dorothea Wagner,et al.  How to Evaluate Clustering Techniques , 2007 .

[177]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[178]  J. Jeffry Howbert,et al.  The Maximum Clique Problem , 2007 .

[179]  D. Parkes,et al.  Analysis of Bidding Networks in eBay: Aggregate Preference Identification through Community Detection , 2007 .

[180]  Edoardo M. Airoldi,et al.  Statistical Network Analysis: Models, Issues, and New Directions - ICML 2006 Workshop on Statistical Network Analysis, Pittsburgh, PA, USA, June 29, 2006, Revised Selected Papers , 2007, SNA@ICML.

[181]  Haifeng Du,et al.  An algorithm for detecting community structure of social networks based on prior knowledge and modularity , 2007, Complex..

[182]  Hristo Djidjev,et al.  A Scalable Multilevel Algorithm for Graph Clustering and Community Structure Detection , 2007, WAW.

[183]  Sabine Van Huffel,et al.  On the Design of a Web-Based Decision Support System for Brain Tumour Diagnosis Using Distributed Agents , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops.

[184]  Kazuyuki Tanaka,et al.  Nonadditive Volume and Community Detection Problem in Complex Networks , 2006 .

[185]  Budapest University of Technology,et al.  Limited resolution in complex network community detection with Potts model approach , 2006, cond-mat/0610370.

[186]  J. Doye,et al.  Thermodynamics of Community Structure , 2006, cond-mat/0610077.

[187]  Jingchun Chen,et al.  Detecting functional modules in the yeast protein-protein interaction network , 2006, Bioinform..

[188]  Deepayan Chakrabarti,et al.  Evolutionary clustering , 2006, KDD '06.

[189]  Ravi Kumar,et al.  Structure and evolution of online social networks , 2006, KDD '06.

[190]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[191]  David D. Jensen,et al.  Using structure indices for efficient approximation of network properties , 2006, KDD '06.

[192]  Binghong Wang,et al.  Notes on the Algorithm for Calculating Betweenness , 2005, physics/0511084.

[193]  Andrzej Kloczkowski,et al.  Functional clustering of yeast proteins from the protein-protein interaction network , 2006, BMC Bioinformatics.

[194]  Javier Béjar,et al.  Clustering algorithm for determining community structure in large networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[195]  Z. Di,et al.  The analysis and dissimilarity comparison of community structure , 2006 .

[196]  I Vragović,et al.  Network community structure and loop coefficient method. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[197]  Cristopher Moore,et al.  Structural Inference of Hierarchies in Networks , 2006, SNA@ICML.

[198]  S. Bornholdt,et al.  When are networks truly modular , 2006, cond-mat/0606220.

[199]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[200]  Johannes Berg,et al.  Cross-species analysis of biological networks by Bayesian alignment. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[201]  M. Hastings Community detection as an inference problem. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[202]  Haluk Bingol,et al.  Community Detection in Complex Networks Using Genetic Algorithms , 2006, 0711.0491.

[203]  J. Reichardt,et al.  Statistical mechanics of community detection. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[204]  L. D. Costa,et al.  Fast Community Identification by Hierarchical Growth , 2006, physics/0602144.

[205]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[206]  Mason A. Porter,et al.  Community Structure in the United States House of Representatives , 2007, ArXiv.

[207]  Illés J. Farkas,et al.  CFinder: locating cliques and overlapping modules in biological networks , 2006, Bioinform..

[208]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[209]  T. Vicsek,et al.  Preferential attachment of communities: The same principle, but a higher level , 2006, cond-mat/0601579.

[210]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[211]  Leon Danon,et al.  The effect of size heterogeneity on community identification in complex networks , 2006, physics/0601144.

[212]  M. Gustafsson,et al.  Comparison and validation of community structures in complex networks , 2006, physics/0601057.

[213]  A. Ruttenberg,et al.  Edge‐count probabilities for the identification of local protein communities and their organization , 2005, Proteins.

[214]  I. Ispolatov,et al.  Finding mesoscopic communities in sparse networks , 2005, Journal of statistical mechanics.

[215]  A. Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2005, Physical review letters.

[216]  Jirí Síma,et al.  On the NP-Completeness of Some Graph Cluster Measures , 2005, SOFSEM.

[217]  Hawoong Jeong,et al.  Random field Ising model and community structure in complex networks , 2005, cond-mat/0502672.

[218]  Matthieu Latapy,et al.  Computing Communities in Large Networks Using Random Walks , 2004, J. Graph Algorithms Appl..

[219]  Sven Kosub,et al.  The complexity of detecting fixed-density clusters , 2003, Discret. Appl. Math..

[220]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[221]  J. Pinney,et al.  Betweenness-based decomposition methods for social and biological networks , 2006 .

[222]  Ulrik Brandes,et al.  On Modularity - NP-Completeness and Beyond , 2006 .

[223]  Casey M. Warmbrand,et al.  A Network Analysis of Committees in the U.S. House of Representatives , 2013, Proceedings of the National Academy of Sciences of the United States of America.

[224]  Paul A. Bates,et al.  Cluster analysis of networks generated through homology: automatic identification of important protein communities involved in cancer metastasis , 2006, BMC Bioinformatics.

[225]  A. Medus,et al.  Detection of community structures in networks via global optimization , 2005 .

[226]  I. Simonsen Diffusion and networks: A powerful combination! , 2005, cond-mat/0508632.

[227]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[228]  David J. Earl,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[229]  Nicole A. Lazar,et al.  Statistics of Extremes: Theory and Applications , 2005, Technometrics.

[230]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[231]  M. A. Muñoz,et al.  Modeling Cooperative Behavior in the Social Sciences , 2005 .

[232]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[233]  David Bawden,et al.  Book Review: Evolution and Structure of the Internet: A Statistical Physics Approach. , 2006 .

[234]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[235]  Malik Magdon-Ismail,et al.  Efficient Identification of Overlapping Communities , 2005, ISI.

[236]  Mason A. Porter,et al.  A network analysis of committees in the United States House of Representatives , 2005, ArXiv.

[237]  Pekka Orponen,et al.  Local Clustering of Large Graphs by Approximate Fiedler Vectors , 2005, WEA.

[238]  Leon Danon,et al.  Comparing community structure identification , 2005, cond-mat/0505245.

[239]  T. Vicsek,et al.  Clique percolation in random networks. , 2005, Physical review letters.

[240]  M. A. Muñoz,et al.  Improved spectral algorithm for the detection of network communities , 2005, physics/0504059.

[241]  Mark A. Pitt,et al.  Advances in Minimum Description Length: Theory and Applications , 2005 .

[242]  Jean-Cédric Chappelier,et al.  Finding instabilities in the community structure of complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[243]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[244]  F. Rao,et al.  Local modularity measure for network clusterizations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[245]  A. Clauset Finding local community structure in networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[246]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[247]  Roger Guimerà,et al.  Cartography of complex networks: modules and universal roles , 2005, Journal of statistical mechanics.

[248]  A. Arenas,et al.  Community detection in complex networks using extremal optimization. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[249]  J. Doye,et al.  Identifying communities within energy landscapes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[250]  E. Bollt,et al.  Local method for detecting communities. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[251]  E. Ziv,et al.  Information-theoretic approach to network modularity. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[252]  Uri Alon,et al.  Coarse-graining and self-dissimilarity of complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[253]  G. Caldarelli,et al.  Detecting communities in large networks , 2004, cond-mat/0402499.

[254]  M. Newman A measure of betweenness centrality based on random walks , 2003, Soc. Networks.

[255]  Dennis M. Wilkinson,et al.  E-Mail as Spectroscopy: Automated Discovery of Community Structure within Organizations , 2003, Inf. Soc..

[256]  Padhraic Smyth,et al.  A Spectral Clustering Approach To Finding Communities in Graph , 2005, SDM.

[257]  Yicheng Zhang,et al.  Referee networks and their spectral properties , 2005 .

[258]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[259]  M. Jackson,et al.  Identifying Community Structures from Network Data , 2005 .

[260]  Malik Magdon-Ismail,et al.  Finding communities by clustering a graph into overlapping subgraphs , 2005, IADIS AC.

[261]  Frank Dudbridge,et al.  The Use of Edge-Betweenness Clustering to Investigate Biological Function in Protein Interaction Networks , 2005, BMC Bioinformatics.

[262]  Andrzej Kudlicki,et al.  Bayesian modeling of protein interaction networks , 2004 .

[263]  V. Latora,et al.  CHANGING OPINIONS IN A CHANGING WORLD: A NEW PERSPECTIVE IN SOCIOPHYSICS , 2004, cond-mat/0410217.

[264]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[265]  Deepayan Chakrabarti,et al.  AutoPart: Parameter-Free Graph Partitioning and Outlier Detection , 2004, PKDD.

[266]  François Fouss,et al.  The Principal Components Analysis of a Graph, and Its Relationships to Spectral Clustering , 2004, ECML.

[267]  Jiawei Han,et al.  Mining scale-free networks using geodesic clustering , 2004, KDD.

[268]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[269]  Thomas A. Schreiber,et al.  The University of South Florida free association, rhyme, and word fragment norms , 2004, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[270]  M. Pellegrini,et al.  Protein Interaction Networks , 2004, Expert review of proteomics.

[271]  L. Freeman,et al.  The Development of Social Network Analysis: A Study in the Sociology of Science , 2005 .

[272]  M. Newman Analysis of weighted networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[273]  Reinhard Lipowsky,et al.  Network Brownian Motion: A New Method to Measure Vertex-Vertex Proximity and to Identify Communities and Subcommunities , 2004, International Conference on Computational Science.

[274]  L. D. Costa Hub-Based Community Finding , 2004, cond-mat/0405022.

[275]  M. A. Muñoz,et al.  Detecting network communities: a new systematic and efficient algorithm , 2004, cond-mat/0404652.

[276]  Bart Selman,et al.  Tracking evolving communities in large linked networks , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[277]  R. Guimerà,et al.  Modularity from fluctuations in random graphs and complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[278]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[279]  D. Parisi,et al.  Self-contained algorithms to detect communities in networks , 2004 .

[280]  V. Latora,et al.  Method to find community structures based on information centrality. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[281]  J. Reichardt,et al.  Detecting fuzzy community structures in complex networks with a Potts model. , 2004, Physical review letters.

[282]  Alessandro Vespignani,et al.  Evolution and Structure of the Internet: A Statistical Physics Approach , 2004 .

[283]  K. Sneppen,et al.  Diffusion on complex networks: a way to probe their large-scale topological structures , 2003, cond-mat/0312476.

[284]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[285]  M. Newman Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[286]  Claudio Castellano,et al.  Defining and identifying communities in networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[287]  M. Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[288]  Dennis M. Wilkinson,et al.  A method for finding communities of related genes , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[289]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[290]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[291]  Shengrui Wang,et al.  A direct approach to graph clustering , 2004, Neural Networks and Computational Intelligence.

[292]  Marina Meila,et al.  An Experimental Comparison of Model-Based Clustering Methods , 2004, Machine Learning.

[293]  D. Mason,et al.  Compartments revealed in food-web structure , 2003, Nature.

[294]  Fang Wu,et al.  Finding communities in linear time: a physics approach , 2003, ArXiv.

[295]  Vladimir Batagelj,et al.  An O(m) Algorithm for Cores Decomposition of Networks , 2003, ArXiv.

[296]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[297]  René Peeters,et al.  The maximum edge biclique problem is NP-complete , 2003, Discret. Appl. Math..

[298]  Ulrik Brandes,et al.  Experiments on Graph Clustering Algorithms , 2003, ESA.

[299]  Padhraic Smyth,et al.  Algorithms for estimating relative importance in networks , 2003, KDD '03.

[300]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[301]  Pablo M. Gleiser,et al.  Community Structure in Jazz , 2003, Adv. Complex Syst..

[302]  David Lusseau,et al.  The emergent properties of a dolphin social network , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[303]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[304]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[305]  Abraham Kandel,et al.  Graph Representations for Web Document Clustering , 2003, IbPRIA.

[306]  Ravi Kumar,et al.  On the Bursty Evolution of Blogspace , 2003, WWW '03.

[307]  Christos Faloutsos,et al.  Electricity Based External Similarity of Categorical Attributes , 2003, PAKDD.

[308]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[309]  Sergey N. Dorogovtsev,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW (Physics) , 2003 .

[310]  K. Kaski,et al.  Dynamics of market correlations: taxonomy and portfolio analysis. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[311]  Haijun Zhou Network landscape from a Brownian particle's perspective. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[312]  Haijun Zhou Distance, dissimilarity index, and network community structure. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[313]  D. R. White,et al.  Structural cohesion and embeddedness: A hierarchical concept of social groups , 2003 .

[314]  Alexander Rives,et al.  Modular organization of cellular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[315]  K. Sneppen,et al.  Modularity and extreme edges of the internet. , 2002, Physical review letters.

[316]  F. Lillo,et al.  Topology of correlation-based minimal spanning trees in real and model markets. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[317]  A. Arenas,et al.  Self-similar community structure in a network of human interactions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[318]  Petter Holme,et al.  Subnetwork hierarchies of biochemical pathways , 2002, Bioinform..

[319]  A. Barabasi,et al.  Hierarchical organization in complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[320]  Stefan Boettcher,et al.  Optimization with Extremal Dynamics , 2000, Complex..

[321]  E. Wenger,et al.  Communities and technologies , 2003 .

[322]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[323]  Masaru Kitsuregawa,et al.  A Graph Based Approach to Extract a Neighborhood Customer Community for Collaborative Filtering , 2002, DNIS.

[324]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[325]  Refael Hassin,et al.  Complexity of finding dense subgraphs , 2002, Discret. Appl. Math..

[326]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[327]  K. Kaski,et al.  Dynamic asset trees and portfolio analysis , 2002, cond-mat/0208131.

[328]  M. Mézard,et al.  The Cavity Method at Zero Temperature , 2002, cond-mat/0207121.

[329]  H. Rieger,et al.  Numerical study of the disorder-driven roughening transition in an elastic manifold in a periodic potential. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[330]  Dan Gusfield,et al.  Partition-distance: A problem and class of perfect graphs arising in clustering , 2002, Inf. Process. Lett..

[331]  C. Lee Giles,et al.  Self-Organization and Identification of Web Communities , 2002, Computer.

[332]  L. Pecora,et al.  Synchronization in small-world systems. , 2001, Physical review letters.

[333]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[334]  Jean-Pierre Eckmann,et al.  Curvature of co-links uncovers hidden thematic layers in the World Wide Web , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[335]  A. Middleton,et al.  Three-dimensional random-field Ising magnet: Interfaces, scaling, and the nature of states , 2001, cond-mat/0107489.

[336]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[337]  Jie Wu,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2003 .

[338]  Niththiyanathan Jeyaratnarajah Cluster-Based Networks , 2002 .

[339]  Jon M. Kleinberg,et al.  An Impossibility Theorem for Clustering , 2002, NIPS.

[340]  David Harel,et al.  On Clustering Using Random Walks , 2001, FSTTCS.

[341]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[342]  H. Rieger,et al.  Disorder-driven critical behavior of periodic elastic media in a crystal potential. , 2001, Physical review letters.

[343]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[344]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[345]  Uriel Feige,et al.  The Dense k -Subgraph Problem , 2001, Algorithmica.

[346]  V. Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[347]  Charles E. Perkins,et al.  Ad Hoc Networking , 2001 .

[348]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[349]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[350]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[351]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[352]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[353]  Balachander Krishnamurthy,et al.  On network-aware clustering of Web clients , 2000, SIGCOMM.

[354]  C. Lee Giles,et al.  Efficient identification of Web communities , 2000, KDD '00.

[355]  A. Barabasi,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[356]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[357]  Gérard Govaert,et al.  Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[358]  S. Dongen Graph clustering by flow simulation , 2000 .

[359]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[360]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[361]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[362]  R. Mantegna,et al.  Taxonomy of stock market indices , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[363]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[364]  S. Dongen Performance criteria for graph clustering and Markov cluster experiments , 2000 .

[365]  D. Watts,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2001 .

[366]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[367]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[368]  Richard M. Karp,et al.  Algorithms for graph partitioning on the planted partition model , 1999, Random Struct. Algorithms.

[369]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[370]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[371]  Thorsten von Eicken,et al.  技術解説 IEEE Computer , 1999 .

[372]  Hideo Matsuda,et al.  Classifying Molecular Sequences Using a Linkage Graph With Their Pairwise Similarities , 1999, Theor. Comput. Sci..

[373]  R. Mantegna Hierarchical structure in financial markets , 1998, cond-mat/9802256.

[374]  Vladimir Batagelj,et al.  Generalized blockmodeling , 2005, Structural analysis in the social sciences.

[375]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[376]  Emden R. Gansner,et al.  Using automatic clustering to produce high-level system organizations of source code , 1998, Proceedings. 6th International Workshop on Program Comprehension. IWPC'98 (Cat. No.98TB100242).

[377]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[378]  C. Lee Giles,et al.  CiteSeer: an automatic citation indexing system , 1998, DL '98.

[379]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[380]  I. H. Witten,et al.  Digital Libraries 98 : the third ACM Conference on Digital Libraries, June 23-26, 1998, Pittsburgh, PA, , 1998 .

[381]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[382]  Alex Pothen,et al.  Graph Partitioning Algorithms with Applications to Scientific Computing , 1997 .

[383]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[384]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure , 1997 .

[385]  Blatt,et al.  Superparamagnetic clustering of data. , 1998, Physical review letters.

[386]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[387]  Shang-Hua Teng,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[388]  Boris Mirkin,et al.  Mathematical Classification and Clustering , 1996 .

[389]  A. Mookerjee The Spin Glass , 1996 .

[390]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[391]  S. McDonough Grooming. , 1995, The Veterinary clinics of North America. Small animal practice.

[392]  S. Borgatti,et al.  Regular equivalence: general theory , 1994 .

[393]  H. V. Jagadish,et al.  Algorithms for Searching Massive Graphs , 1994, IEEE Trans. Knowl. Data Eng..

[394]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[395]  M. Randic,et al.  Resistance distance , 1993 .

[396]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[397]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[398]  John Scott Social Network Analysis , 1988 .

[399]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[400]  HERBERT A. SIMON,et al.  The Architecture of Complexity , 1991 .

[401]  S. Borgatti,et al.  LS sets, lambda sets and other cohesive subsets , 1990 .

[402]  Farhad Shahrokhi,et al.  Sparsest cuts and bottlenecks in graphs , 1990, Discret. Appl. Math..

[403]  Chung-Kuan Cheng,et al.  Towards efficient hierarchical designs by ratio cut partitioning , 1989, 1989 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers.

[404]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 1989, STOC '89.

[405]  G. Kedem,et al.  An algorithm for quadrisection and its application to standard cell placement , 1988 .

[406]  John Scott What is social network analysis , 2010 .

[407]  P. Bonacich Power and Centrality: A Family of Measures , 1987, American Journal of Sociology.

[408]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[409]  Carsten Peterson,et al.  A Mean Field Theory Learning Algorithm for Neural Networks , 1987, Complex Syst..

[410]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[411]  P. Anderson,et al.  Application of statistical mechanics to NP-complete problems in combinatorial optimisation , 1986 .

[412]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[413]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[414]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[415]  Ian T. Jolliffe,et al.  A Method for Comparing Two Hierarchical Clusterings: Comment , 1983 .

[416]  Stephen B. Seidman,et al.  Network structure and minimum degree , 1983 .

[417]  C. Mallows,et al.  A Method for Comparing Two Hierarchical Clusterings , 1983 .

[418]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[419]  K. Reitz,et al.  Graph and Semigroup Homomorphisms on Networks of Relations , 1983 .

[420]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[421]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[422]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[423]  F. Y. Wu The Potts model , 1982 .

[424]  E. Barnes An algorithm for partitioning the nodes of a graph , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[425]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[426]  S. Fienberg,et al.  Categorical Data Analysis of Single Sociometric Relations , 1981 .

[427]  S. Pimm,et al.  The structure of food webs. , 1979, Theoretical population biology.

[428]  L. Lovász Combinatorial problems and exercises , 1979 .

[429]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[430]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[431]  Stephen B. Seidman,et al.  A graph‐theoretic generalization of the clique concept* , 1978 .

[432]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[433]  R. J. Mokken,et al.  Cliques, clubs and clans , 1979 .

[434]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[435]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[436]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[437]  Ronald S. Burt,et al.  Positions in Networks , 1976 .

[438]  Derek de Solla Price,et al.  A general theory of bibliometric and other cumulative advantage processes , 1976, J. Am. Soc. Inf. Sci..

[439]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[440]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[441]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[442]  H. Akaike A new look at the statistical model identification , 1974 .

[443]  Dennis V. Lindley,et al.  An Introduction to Bayesian Inference and Decision , 1974 .

[444]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[445]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[446]  R. Alba A graph‐theoretic definition of a sociometric clique† , 1973 .

[447]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[448]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[449]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[450]  Coenraad Bron,et al.  Finding all cliques of an undirected graph , 1973 .

[451]  P. Bonacich Factoring and weighting approaches to status scores and clique identification , 1972 .

[452]  R. L. Winkler An Introduction to Bayesian Inference and Decision , 1972 .

[453]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[454]  J. Anthonisse The rush in a directed graph , 1971 .

[455]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[456]  Stanley Milgram,et al.  An Experimental Study of the Small World Problem , 1969 .

[457]  F. Luccio,et al.  On the Decomposition of Networks in Minimally Interconnected Subnetworks , 1969 .

[458]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[459]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[460]  Patrick Rivett,et al.  Introduction to operations research , 1968 .

[461]  R. Faure,et al.  Introduction to operations research , 1968 .

[462]  E. Sunderland Human Groups , 1967, Nature.

[463]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[464]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[465]  C. Parrack Cliques , 1966, The Mathematical Gazette.

[466]  E. A. Maxwell,et al.  Introduction to Mathematical Sociology , 1965 .

[467]  D J PRICE,et al.  NETWORKS OF SCIENTIFIC PAPERS. , 1965, Science.

[468]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[469]  L. Goddard Information Theory , 1962, Nature.

[470]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[471]  Peter Elias,et al.  A note on the maximum flow through a network , 1956, IRE Trans. Inf. Theory.

[472]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956, Canadian Journal of Mathematics.

[473]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[474]  R. Weiss,et al.  A Method for the Analysis of the Structure of Complex Organizations , 1955 .

[475]  P. Bohannan Cultural Anthropology , 2020, Nature.

[476]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[477]  A. Rapoport,et al.  Connectivity of random nets , 1951 .

[478]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[479]  R. Luce,et al.  Connectivity and generalized cliques in sociometric group structure , 1950, Psychometrika.

[480]  R. Luce,et al.  A method of matrix analysis of group structure , 1949, Psychometrika.

[481]  Stuart A. Rice,et al.  The Identification of Blocs in Small Political Bodies , 1927, American Political Science Review.

[482]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.

[483]  Physics Reports , 2022 .