Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles

Abstract The drag, lift and moment coefficients of differently shaped single particles have been determined as a function of the angle of incidence at particle Reynolds numbers between Re = 0.3 and 240 under different conditions. For this purpose simulations of the flow around these particles have been performed using the three-dimensional Lattice Boltzmann method. In the first case studied a particle is fixed in a uniform flow, in the second case the particle is rotating in a uniform flow to determine, among others, the Magnus lift force and in the third case the particle is fixed in a linear shear flow. In the first case six particle shapes are considered, i.e. a sphere, a spheroid, a cube, a cuboid and two cylinders with an axis ratio of 1 and 1.5, respectively. In the second and third case the sphere and the spheroid are considered. At the higher Re considered, the drag depends strongly on particle shape, the angle of incidence and particle rotation. The lift and the torque of both the sphere and the spheroid are strongly affected by particle rotation and fluid shear. For approximately Re ⩽ 1, the shear induced lift for unbounded flow could not be simulated as the top and bottom wall have a significant influence in the current flow configuration. The shear induced lift of the sphere changes direction at approximately Re = 50 and the mean (over the orientation) shear induced lift of the spheroid changes direction at approximately Re = 90.

[1]  O. Föppl Windkräfte an ebenen und gewölbten Platten , 1911 .

[2]  H. Faxén Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist , 1922 .

[3]  R. H. Magarvey,et al.  TRANSITION RANGES FOR THREE-DIMENSIONAL WAKES , 1961 .

[4]  E. Jacobs Sphere drag tests in the variable density wind tunnel , 1929 .

[5]  P. Saffman The lift on a small sphere in a slow shear flow , 1965, Journal of Fluid Mechanics.

[6]  J. S. Mcnown,et al.  Effects of particle shape on settling velocity at low Reynolds numbers , 1950 .

[7]  Jan Dušek,et al.  Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere , 2000, Journal of Fluid Mechanics.

[8]  J. W. Maccoll Aerodynamics of a Spinning Sphere , 1928, The Journal of the Royal Aeronautical Society.

[9]  Andreas Acrivos,et al.  The instability of the steady flow past spheres and disks , 1993, Journal of Fluid Mechanics.

[10]  R. G. Cox,et al.  The lateral migration of a spherical particle in two-dimensional shear flows , 1976, Journal of Fluid Mechanics.

[11]  B. Oesterlé,et al.  Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers , 1998 .

[12]  H. D. Arnold Limitations Imposed by Slip and Inertia Terms upon Stokes's Law for the Motion of Spheres through Liquids , 1911 .

[13]  G. Batchelor,et al.  Slender-body theory for particles of arbitrary cross-section in Stokes flow , 1970, Journal of Fluid Mechanics.

[14]  Hiroshi Sakamoto,et al.  The formation mechanism and shedding frequency of vortices from a sphere in uniform shear flow , 1995, Journal of Fluid Mechanics.

[15]  H. M. Barkla,et al.  The Magnus or Robins effect on rotating spheres , 1971, Journal of Fluid Mechanics.

[16]  T. W. Hoffman,et al.  Numerical solution of the Navier‐Stokes equation for flow past spheres: Part I. Viscous flow around spheres with and without radial mass efflux , 1967 .

[17]  Étude expérimentale de l'instabilité du sillage d'une sphère , 1998 .

[18]  Arun K. Saha,et al.  Three-dimensional numerical simulations of the transition of flow past a cube , 2004 .

[19]  J. McLaughlin Inertial migration of a small sphere in linear shear flows , 1991, Journal of Fluid Mechanics.

[20]  C. W. Oseen,et al.  Neuere Methoden und Ergebnisse in der Hydrodynamik , 1927 .

[21]  D L Bacon,et al.  The resistance of spheres in wind tunnels and in air , 1924 .

[22]  J. Masliyah,et al.  Numerical study of steady flow past spheroids , 1970, Journal of Fluid Mechanics.

[23]  S. Shirayama Flow Past a Sphere: Topological Transitions of the Vorticity Field , 1992 .

[24]  Ira H. Abbott The drag of two streamline bodies as affected by protuberances and appendages , 1932 .

[25]  S. Balachandar,et al.  Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re , 2002 .

[26]  Jacques Magnaudet,et al.  Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow , 1995, Journal of Fluid Mechanics.

[27]  R. Mei An approximate expression for the shear lift force on a spherical particle at finite reynolds number , 1992 .

[28]  Yoshinobu Morikawa,et al.  Experimental Measurement of the Magnus Force on a Rotating Sphere at Low Reynolds Numbers , 1985 .

[29]  B. Oesterlé,et al.  A SHEAR FLOW AROUND A SPINNING SPHERE: NUMERICAL STUDY AT MODERATE REYNOLDS NUMBERS , 1998 .

[30]  O. Levenspiel,et al.  Drag coefficient and terminal velocity of spherical and nonspherical particles , 1989 .

[31]  D. Ormières,et al.  Transition to Turbulence in the Wake of a Sphere , 1999 .

[32]  G. G. Stokes On the Effect of the Internal Friction of Fluids on the Motion of Pendulums , 2009 .

[33]  William W. Willmarth,et al.  Some experimental results on sphere and disk drag , 1971 .

[34]  J. M. Davies,et al.  The Aerodynamics of Golf Balls , 1949 .

[35]  T. R. Auton,et al.  The lift force on a spherical body in a rotational flow , 1987, Journal of Fluid Mechanics.

[36]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[37]  C. Kleinstreuer,et al.  A numerical investigation of laminar flow past nonspherical solids and droplets , 1995 .

[38]  H. L. Dryden,et al.  Effect of turbulence in wind-tunnel measurements , 1931 .

[39]  V. C. Patel,et al.  Flow past a sphere up to a Reynolds number of 300 , 1999, Journal of Fluid Mechanics.

[40]  R. Whitmore,et al.  Experimental determination of the wall effect for spheres falling axially in cylindrical vessels , 1961 .

[41]  S. Orszag,et al.  Numerical investigation of transitional and weak turbulent flow past a sphere , 2000, Journal of Fluid Mechanics.

[42]  Rudolf Ladenburg,et al.  Über den Einfluß von Wänden auf die Bewegung einer Kugel in einer reibenden Flüssigkeit , 1907 .

[43]  T. Bromwich,et al.  Motion of a Sphere in a Viscous Fluid , 1929, Mathematical Proceedings of the Cambridge Philosophical Society.

[44]  Rajat Mittal,et al.  Planar Symmetry in the Unsteady Wake of a Sphere , 1999 .

[45]  A. Acrivos,et al.  Stokes flow past a particle of arbitrary shape: a numerical method of solution , 1975, Journal of Fluid Mechanics.

[46]  H. S. A. M. B.Sc. XXXI. The motion of a sphere in a viscous fluid , 1900 .

[47]  H. Dwyer,et al.  A sphere in shear flow at finite Reynolds number: effect of shear on particle lift, drag, and heat transfer , 1990, Journal of Fluid Mechanics.

[48]  H. R. Pruppacher,et al.  A Numerical Study of Viscous Flow Past a Thin Oblate Spheroid at Low and Intermediate Reynolds Numbers , 1973 .

[49]  A. Oberbeck,et al.  Ueber stationäre Flüssigkeitsbewegungen mit Berücksichtigung der inneren Reibung. , 1876 .

[50]  John D. Hottovy,et al.  Drag Coefficients for Irregularly Shaped Particles , 1979 .

[51]  H. J. Kim,et al.  Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation , 1988 .

[52]  B. J. Mason,et al.  The behaviour of freely falling cylinders and cones in a viscous fluid , 1965, Journal of Fluid Mechanics.

[53]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[54]  J. Sutterby Falling Sphere Viscometry. II. End Effects in Short Tubes , 1973 .

[55]  P. Lallemand,et al.  Momentum transfer of a Boltzmann-lattice fluid with boundaries , 2001 .

[56]  A. Goldburg,et al.  Transition and Strouhal Number for the Incompressible Wake of Various Bodies , 1966 .

[57]  Norman E. Hawk,et al.  Steady and Unsteady Motions and Wakes of Freely Falling Disks , 1964 .

[58]  Franco Nori,et al.  Chaotic dynamics of falling disks , 1997, Nature.

[59]  Walter Tollmien,et al.  Der Luftwiderstand von Kugeln , 1961 .

[60]  Gerard M. Faeth,et al.  Sphere wakes in still surroundings at intermediate Reynolds numbers , 1993 .

[61]  H. R. Pruppacher,et al.  Some relations between drag and flow pattern of viscous flow past a sphere and a cylinder at low and intermediate Reynolds numbers , 1970, Journal of Fluid Mechanics.

[62]  C. Aidun,et al.  Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation , 1998, Journal of Fluid Mechanics.

[63]  H. Liebster Über den Widerstand von Kugeln , 1927 .

[64]  H. D. Arnold LXXIV. Limitations imposed by slip and inertia terms upon Stoke's law for the motion of spheres through liquids , 1911 .

[65]  P. Cherukat,et al.  A computational study of the inertial lift on a sphere in a linear shear flow field , 1999 .

[66]  O. Sawatzki,et al.  Das Strömungsfeld um eine rotierende Kugel , 1970 .

[67]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[68]  P. Cherukat,et al.  THE INERTIAL LIFT ON A RIGID SPHERE TRANSLATING IN A LINEAR SHEAR FLOW FIELD , 1994 .

[69]  Some influences of particle shape on drag and heat transfer , 1990 .

[70]  S. I. Rubinow,et al.  The transverse force on a spinning sphere moving in a viscous fluid , 1961, Journal of Fluid Mechanics.

[71]  Ryoichi Kurose,et al.  Drag and lift forces on a rotating sphere in a linear shear flow , 1999, Journal of Fluid Mechanics.

[72]  G. Kirchhoff Vorlesungen über mathematische physik , 1877 .

[73]  A. Clamen,et al.  Drag and oscillatory motion of freely falling cylindrical particles , 1964 .

[74]  S. Dennis,et al.  Calculation of the steady flow past a sphere at low and moderate Reynolds numbers , 1971, Journal of Fluid Mechanics.

[75]  S. Taneda Experimental Investigation of the Wake behind a Sphere at Low Reynolds Numbers , 1956 .

[76]  J. Sutterby Falling Sphere Viscometry. I. Wall and Inertial Corrections to Stokes' Law in Long Tubes , 1973 .

[77]  Toshihiro Tanaka,et al.  Experiment of Fluid Forces on a Rotating Sphere and Spheroid , 1990 .

[78]  Gary H. Ganser,et al.  A rational approach to drag prediction of spherical and nonspherical particles , 1993 .

[79]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[80]  Andreas Hölzer,et al.  New simple correlation formula for the drag coefficient of non-spherical particles , 2008 .

[81]  Mark C. Thompson,et al.  Kinematics and dynamics of sphere wake transition , 2001 .

[82]  H. Heywood Measurement of the Fineness of Powdered Materials , 1938 .

[83]  D. Ingham,et al.  The steady flow due to a rotating sphere at low and moderate Reynolds numbers , 1980, Journal of Fluid Mechanics.

[84]  A. Hölzer Bestimmung des Widerstandes, Auftriebs und Drehmoments und Simulation der Bewegung nichtsphärischer Partikel in laminaren und turbulenten Strömungen mit dem Lattice-Boltzmann-Verfahren , 2007 .

[85]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[86]  L. Schouveiler,et al.  PERIODIC WAKES OF LOW ASPECT RATIO CYLINDERS WITH FREE HEMISPHERICAL ENDS , 2001 .

[87]  Wei Shyy,et al.  Force evaluation in the lattice Boltzmann method involving curved geometry. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.