Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles
暂无分享,去创建一个
[1] O. Föppl. Windkräfte an ebenen und gewölbten Platten , 1911 .
[2] H. Faxén. Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist , 1922 .
[3] R. H. Magarvey,et al. TRANSITION RANGES FOR THREE-DIMENSIONAL WAKES , 1961 .
[4] E. Jacobs. Sphere drag tests in the variable density wind tunnel , 1929 .
[5] P. Saffman. The lift on a small sphere in a slow shear flow , 1965, Journal of Fluid Mechanics.
[6] J. S. Mcnown,et al. Effects of particle shape on settling velocity at low Reynolds numbers , 1950 .
[7] Jan Dušek,et al. Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere , 2000, Journal of Fluid Mechanics.
[8] J. W. Maccoll. Aerodynamics of a Spinning Sphere , 1928, The Journal of the Royal Aeronautical Society.
[9] Andreas Acrivos,et al. The instability of the steady flow past spheres and disks , 1993, Journal of Fluid Mechanics.
[10] R. G. Cox,et al. The lateral migration of a spherical particle in two-dimensional shear flows , 1976, Journal of Fluid Mechanics.
[11] B. Oesterlé,et al. Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers , 1998 .
[12] H. D. Arnold. Limitations Imposed by Slip and Inertia Terms upon Stokes's Law for the Motion of Spheres through Liquids , 1911 .
[13] G. Batchelor,et al. Slender-body theory for particles of arbitrary cross-section in Stokes flow , 1970, Journal of Fluid Mechanics.
[14] Hiroshi Sakamoto,et al. The formation mechanism and shedding frequency of vortices from a sphere in uniform shear flow , 1995, Journal of Fluid Mechanics.
[15] H. M. Barkla,et al. The Magnus or Robins effect on rotating spheres , 1971, Journal of Fluid Mechanics.
[16] T. W. Hoffman,et al. Numerical solution of the Navier‐Stokes equation for flow past spheres: Part I. Viscous flow around spheres with and without radial mass efflux , 1967 .
[17] Étude expérimentale de l'instabilité du sillage d'une sphère , 1998 .
[18] Arun K. Saha,et al. Three-dimensional numerical simulations of the transition of flow past a cube , 2004 .
[19] J. McLaughlin. Inertial migration of a small sphere in linear shear flows , 1991, Journal of Fluid Mechanics.
[20] C. W. Oseen,et al. Neuere Methoden und Ergebnisse in der Hydrodynamik , 1927 .
[21] D L Bacon,et al. The resistance of spheres in wind tunnels and in air , 1924 .
[22] J. Masliyah,et al. Numerical study of steady flow past spheroids , 1970, Journal of Fluid Mechanics.
[23] S. Shirayama. Flow Past a Sphere: Topological Transitions of the Vorticity Field , 1992 .
[24] Ira H. Abbott. The drag of two streamline bodies as affected by protuberances and appendages , 1932 .
[25] S. Balachandar,et al. Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re , 2002 .
[26] Jacques Magnaudet,et al. Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow , 1995, Journal of Fluid Mechanics.
[27] R. Mei. An approximate expression for the shear lift force on a spherical particle at finite reynolds number , 1992 .
[28] Yoshinobu Morikawa,et al. Experimental Measurement of the Magnus Force on a Rotating Sphere at Low Reynolds Numbers , 1985 .
[29] B. Oesterlé,et al. A SHEAR FLOW AROUND A SPINNING SPHERE: NUMERICAL STUDY AT MODERATE REYNOLDS NUMBERS , 1998 .
[30] O. Levenspiel,et al. Drag coefficient and terminal velocity of spherical and nonspherical particles , 1989 .
[31] D. Ormières,et al. Transition to Turbulence in the Wake of a Sphere , 1999 .
[32] G. G. Stokes. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums , 2009 .
[33] William W. Willmarth,et al. Some experimental results on sphere and disk drag , 1971 .
[34] J. M. Davies,et al. The Aerodynamics of Golf Balls , 1949 .
[35] T. R. Auton,et al. The lift force on a spherical body in a rotational flow , 1987, Journal of Fluid Mechanics.
[36] Y. Qian,et al. Lattice BGK Models for Navier-Stokes Equation , 1992 .
[37] C. Kleinstreuer,et al. A numerical investigation of laminar flow past nonspherical solids and droplets , 1995 .
[38] H. L. Dryden,et al. Effect of turbulence in wind-tunnel measurements , 1931 .
[39] V. C. Patel,et al. Flow past a sphere up to a Reynolds number of 300 , 1999, Journal of Fluid Mechanics.
[40] R. Whitmore,et al. Experimental determination of the wall effect for spheres falling axially in cylindrical vessels , 1961 .
[41] S. Orszag,et al. Numerical investigation of transitional and weak turbulent flow past a sphere , 2000, Journal of Fluid Mechanics.
[42] Rudolf Ladenburg,et al. Über den Einfluß von Wänden auf die Bewegung einer Kugel in einer reibenden Flüssigkeit , 1907 .
[43] T. Bromwich,et al. Motion of a Sphere in a Viscous Fluid , 1929, Mathematical Proceedings of the Cambridge Philosophical Society.
[44] Rajat Mittal,et al. Planar Symmetry in the Unsteady Wake of a Sphere , 1999 .
[45] A. Acrivos,et al. Stokes flow past a particle of arbitrary shape: a numerical method of solution , 1975, Journal of Fluid Mechanics.
[46] H. S. A. M. B.Sc.. XXXI. The motion of a sphere in a viscous fluid , 1900 .
[47] H. Dwyer,et al. A sphere in shear flow at finite Reynolds number: effect of shear on particle lift, drag, and heat transfer , 1990, Journal of Fluid Mechanics.
[48] H. R. Pruppacher,et al. A Numerical Study of Viscous Flow Past a Thin Oblate Spheroid at Low and Intermediate Reynolds Numbers , 1973 .
[49] A. Oberbeck,et al. Ueber stationäre Flüssigkeitsbewegungen mit Berücksichtigung der inneren Reibung. , 1876 .
[50] John D. Hottovy,et al. Drag Coefficients for Irregularly Shaped Particles , 1979 .
[51] H. J. Kim,et al. Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation , 1988 .
[52] B. J. Mason,et al. The behaviour of freely falling cylinders and cones in a viscous fluid , 1965, Journal of Fluid Mechanics.
[53] Matthaeus,et al. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[54] J. Sutterby. Falling Sphere Viscometry. II. End Effects in Short Tubes , 1973 .
[55] P. Lallemand,et al. Momentum transfer of a Boltzmann-lattice fluid with boundaries , 2001 .
[56] A. Goldburg,et al. Transition and Strouhal Number for the Incompressible Wake of Various Bodies , 1966 .
[57] Norman E. Hawk,et al. Steady and Unsteady Motions and Wakes of Freely Falling Disks , 1964 .
[58] Franco Nori,et al. Chaotic dynamics of falling disks , 1997, Nature.
[59] Walter Tollmien,et al. Der Luftwiderstand von Kugeln , 1961 .
[60] Gerard M. Faeth,et al. Sphere wakes in still surroundings at intermediate Reynolds numbers , 1993 .
[61] H. R. Pruppacher,et al. Some relations between drag and flow pattern of viscous flow past a sphere and a cylinder at low and intermediate Reynolds numbers , 1970, Journal of Fluid Mechanics.
[62] C. Aidun,et al. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation , 1998, Journal of Fluid Mechanics.
[63] H. Liebster. Über den Widerstand von Kugeln , 1927 .
[64] H. D. Arnold. LXXIV. Limitations imposed by slip and inertia terms upon Stoke's law for the motion of spheres through liquids , 1911 .
[65] P. Cherukat,et al. A computational study of the inertial lift on a sphere in a linear shear flow field , 1999 .
[66] O. Sawatzki,et al. Das Strömungsfeld um eine rotierende Kugel , 1970 .
[67] L. Luo,et al. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .
[68] P. Cherukat,et al. THE INERTIAL LIFT ON A RIGID SPHERE TRANSLATING IN A LINEAR SHEAR FLOW FIELD , 1994 .
[69] Some influences of particle shape on drag and heat transfer , 1990 .
[70] S. I. Rubinow,et al. The transverse force on a spinning sphere moving in a viscous fluid , 1961, Journal of Fluid Mechanics.
[71] Ryoichi Kurose,et al. Drag and lift forces on a rotating sphere in a linear shear flow , 1999, Journal of Fluid Mechanics.
[72] G. Kirchhoff. Vorlesungen über mathematische physik , 1877 .
[73] A. Clamen,et al. Drag and oscillatory motion of freely falling cylindrical particles , 1964 .
[74] S. Dennis,et al. Calculation of the steady flow past a sphere at low and moderate Reynolds numbers , 1971, Journal of Fluid Mechanics.
[75] S. Taneda. Experimental Investigation of the Wake behind a Sphere at Low Reynolds Numbers , 1956 .
[76] J. Sutterby. Falling Sphere Viscometry. I. Wall and Inertial Corrections to Stokes' Law in Long Tubes , 1973 .
[77] Toshihiro Tanaka,et al. Experiment of Fluid Forces on a Rotating Sphere and Spheroid , 1990 .
[78] Gary H. Ganser,et al. A rational approach to drag prediction of spherical and nonspherical particles , 1993 .
[79] G. B. Jeffery. The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .
[80] Andreas Hölzer,et al. New simple correlation formula for the drag coefficient of non-spherical particles , 2008 .
[81] Mark C. Thompson,et al. Kinematics and dynamics of sphere wake transition , 2001 .
[82] H. Heywood. Measurement of the Fineness of Powdered Materials , 1938 .
[83] D. Ingham,et al. The steady flow due to a rotating sphere at low and moderate Reynolds numbers , 1980, Journal of Fluid Mechanics.
[84] A. Hölzer. Bestimmung des Widerstandes, Auftriebs und Drehmoments und Simulation der Bewegung nichtsphärischer Partikel in laminaren und turbulenten Strömungen mit dem Lattice-Boltzmann-Verfahren , 2007 .
[85] L. Luo,et al. A priori derivation of the lattice Boltzmann equation , 1997 .
[86] L. Schouveiler,et al. PERIODIC WAKES OF LOW ASPECT RATIO CYLINDERS WITH FREE HEMISPHERICAL ENDS , 2001 .
[87] Wei Shyy,et al. Force evaluation in the lattice Boltzmann method involving curved geometry. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.