Implementation of universal control on a decoherence-free qubit

We demonstrate storage and manipulation of one qubit encoded into a decoherence-free subspace (DFS) of two nuclear spins using liquid state nuclear magnetic resonance techniques. The DFS is spanned by states that are unaffected by arbitrary collective phase noise. Encoding and decoding procedures reversibly map an arbitrary qubit state from a single data spin to the DFS and back. The implementation demonstrates the robustness of the DFS memory against engineered dephasing with arbitrary strength as well as a substantial increase in the amount of quantum information retained, relative to an un-encoded qubit, under both engineered and natural noise processes. In addition, a universal set of logical manipulations over the encoded qubit is also realized. Although intrinsic limitations prevent maintenance of full noise tolerance during quantum gates, we show how the use of dynamical control methods at the encoded level can ensure that computation is protected with finite distance. We demonstrate noise-tolerant control over a DFS qubit in the presence of engineered phase noise significantly stronger than observed from natural noise sources.

[1]  Lorenza Viola,et al.  Hadamard products of product operators and the design of gradient-diffusion experiments for simulating decoherence by NMR spectroscopy , 2000, quant-ph/0009010.

[2]  Paolo Zanardi Stabilizing quantum information , 2000 .

[3]  Mark Dykman,et al.  Quantum Computing with Electrons Floating on Liquid Helium , 1999 .

[4]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[5]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[6]  Kempe,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.

[7]  W. Warren,et al.  Homogeneous NMR Spectra in Inhomogeneous Fields , 1996, Science.

[8]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .

[9]  A. N. Garroway,et al.  Zero quantum NMR in the rotating frame: J cross polarization in AXN systems , 1981 .

[10]  W Richter,et al.  MR imaging contrast enhancement based on intermolecular zero quantum coherences. , 1998, Science.

[11]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[12]  High-resolution, >1 GHz NMR in unstable magnetic fields. , 2000, Physical review letters.

[13]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[14]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[15]  Lorenza Viola Quantum control via encoded dynamical decoupling , 2002 .

[16]  K. B. Whaley,et al.  Decoherence-free subspaces for multiple-qubit errors. I. Characterization , 1999, quant-ph/9908064.

[17]  Lorenza Viola,et al.  Constructing Qubits in Physical Systems , 2001 .

[18]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[19]  David G. Cory,et al.  A generalized k-space formalism for treating the spatial aspects of a variety of NMR experiments , 1998 .

[20]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[22]  K. B. Whaley,et al.  Robustness of Decoherence-Free Subspaces for Quantum Computation , 1999 .

[23]  A. J. Shaka,et al.  Evaluation of a new broadband decoupling sequence: WALTZ-16 , 1983 .

[24]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[25]  E. Hahn,et al.  Nuclear Double Resonance in the Rotating Frame , 1962 .

[26]  Paolo Zanardi,et al.  QUANTUM INFORMATION IN SEMICONDUCTORS : NOISELESS ENCODING IN A QUANTUM-DOT ARRAY , 1998 .

[27]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[28]  Timothy F. Havel,et al.  Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing , 2002, quant-ph/0202065.

[29]  D. Leung,et al.  Bulk quantum computation with nuclear magnetic resonance: theory and experiment , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[31]  P. Zanardi,et al.  Error avoiding quantum codes , 1997, quant-ph/9710041.

[32]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[33]  Lloyd,et al.  Dynamical generation of noiseless quantum subsystems , 2000, Physical review letters.

[34]  L. Hall,et al.  Measurement of high resolution single-quantum J resolved proton spectra in inhomogeneous magnetic fields via zero-quantum coherences , 1986 .

[35]  S. Filippo Quantum computation using decoherence-free states of the physical operator algebra , 1999, quant-ph/9910005.

[36]  L. Hall,et al.  Use of broadband decoupled zero-quantum coherence for NMR spectroscopy and imaging , 1986 .

[37]  A. J. Shaka,et al.  Composite pulses with dual compensation , 1983 .

[38]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[39]  Paolo Zanardi Computation on an error-avoiding quantum code and symmetrization , 1999 .

[40]  Zero-quantum-coherence, chemical-shift-resolved imaging in an inhomogeneous magnetic field , 1986 .

[41]  Dissipation and decoherence in a quantum register , 1998 .

[42]  Daniel A. Lidar,et al.  CONCATENATING DECOHERENCE-FREE SUBSPACES WITH QUANTUM ERROR CORRECTING CODES , 1998, quant-ph/9809081.

[43]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[44]  R. R. Ernst,et al.  High‐Resolution NMR Study of Relaxation Mechanisms in a Two‐Spin System , 1970 .

[45]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[46]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[47]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[48]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[49]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[50]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[51]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[52]  D A Lidar,et al.  Reducing constraints on quantum computer design by encoded selective recoupling. , 2002, Physical review letters.

[53]  A. J. Short,et al.  Fidelity of single qubit maps , 2002 .