Implementation of universal control on a decoherence-free qubit
暂无分享,去创建一个
Lorenza Viola | David G. Cory | Evan M. Fortunato | Jonathan Hodges | D. Cory | L. Viola | J. Hodges | E. Fortunato | G. Teklemariam | Grum Teklemariam
[1] Lorenza Viola,et al. Hadamard products of product operators and the design of gradient-diffusion experiments for simulating decoherence by NMR spectroscopy , 2000, quant-ph/0009010.
[2] Paolo Zanardi. Stabilizing quantum information , 2000 .
[3] Mark Dykman,et al. Quantum Computing with Electrons Floating on Liquid Helium , 1999 .
[4] Timothy F. Havel,et al. NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.
[5] M. A. Rowe,et al. A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.
[6] Kempe,et al. Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.
[7] W. Warren,et al. Homogeneous NMR Spectra in Inhomogeneous Fields , 1996, Science.
[8] U. Haeberlen,et al. Coherent Averaging Effects in Magnetic Resonance , 1968 .
[9] A. N. Garroway,et al. Zero quantum NMR in the rotating frame: J cross polarization in AXN systems , 1981 .
[10] W Richter,et al. MR imaging contrast enhancement based on intermolecular zero quantum coherences. , 1998, Science.
[11] E. Purcell,et al. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .
[12] High-resolution, >1 GHz NMR in unstable magnetic fields. , 2000, Physical review letters.
[13] Guang-Can Guo,et al. Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .
[14] Isaac L. Chuang,et al. Prescription for experimental determination of the dynamics of a quantum black box , 1997 .
[15] Lorenza Viola. Quantum control via encoded dynamical decoupling , 2002 .
[16] K. B. Whaley,et al. Decoherence-free subspaces for multiple-qubit errors. I. Characterization , 1999, quant-ph/9908064.
[17] Lorenza Viola,et al. Constructing Qubits in Physical Systems , 2001 .
[18] Seth Lloyd,et al. Universal Control of Decoupled Quantum Systems , 1999 .
[19] David G. Cory,et al. A generalized k-space formalism for treating the spatial aspects of a variety of NMR experiments , 1998 .
[20] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[21] R Laflamme,et al. Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.
[22] K. B. Whaley,et al. Robustness of Decoherence-Free Subspaces for Quantum Computation , 1999 .
[23] A. J. Shaka,et al. Evaluation of a new broadband decoupling sequence: WALTZ-16 , 1983 .
[24] E. Knill,et al. DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.
[25] E. Hahn,et al. Nuclear Double Resonance in the Rotating Frame , 1962 .
[26] Paolo Zanardi,et al. QUANTUM INFORMATION IN SEMICONDUCTORS : NOISELESS ENCODING IN A QUANTUM-DOT ARRAY , 1998 .
[27] K. B. Whaley,et al. Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.
[28] Timothy F. Havel,et al. Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing , 2002, quant-ph/0202065.
[29] D. Leung,et al. Bulk quantum computation with nuclear magnetic resonance: theory and experiment , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[30] P. Zanardi,et al. Noiseless Quantum Codes , 1997, quant-ph/9705044.
[31] P. Zanardi,et al. Error avoiding quantum codes , 1997, quant-ph/9710041.
[32] S. Meiboom,et al. Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .
[33] Lloyd,et al. Dynamical generation of noiseless quantum subsystems , 2000, Physical review letters.
[34] L. Hall,et al. Measurement of high resolution single-quantum J resolved proton spectra in inhomogeneous magnetic fields via zero-quantum coherences , 1986 .
[35] S. Filippo. Quantum computation using decoherence-free states of the physical operator algebra , 1999, quant-ph/9910005.
[36] L. Hall,et al. Use of broadband decoupled zero-quantum coherence for NMR spectroscopy and imaging , 1986 .
[37] A. J. Shaka,et al. Composite pulses with dual compensation , 1983 .
[38] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.
[39] Paolo Zanardi. Computation on an error-avoiding quantum code and symmetrization , 1999 .
[40] Zero-quantum-coherence, chemical-shift-resolved imaging in an inhomogeneous magnetic field , 1986 .
[41] Dissipation and decoherence in a quantum register , 1998 .
[42] Daniel A. Lidar,et al. CONCATENATING DECOHERENCE-FREE SUBSPACES WITH QUANTUM ERROR CORRECTING CODES , 1998, quant-ph/9809081.
[43] W. Zurek. Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.
[44] R. R. Ernst,et al. High‐Resolution NMR Study of Relaxation Mechanisms in a Two‐Spin System , 1970 .
[45] Viola,et al. Theory of quantum error correction for general noise , 2000, Physical review letters.
[46] B. E. Kane. A silicon-based nuclear spin quantum computer , 1998, Nature.
[47] D. DiVincenzo,et al. Quantum computation with quantum dots , 1997, cond-mat/9701055.
[48] G. Bodenhausen,et al. Principles of nuclear magnetic resonance in one and two dimensions , 1987 .
[49] A. G. White,et al. Experimental verification of decoherence-free subspaces. , 2000, Science.
[50] Schumacher,et al. Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[51] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[52] D A Lidar,et al. Reducing constraints on quantum computer design by encoded selective recoupling. , 2002, Physical review letters.
[53] A. J. Short,et al. Fidelity of single qubit maps , 2002 .