New advances on a posteriori error on constitutive relation in f.e. analysis

This paper deals with error estimators based on residuals on the constitutive relation which have been developed for the past 20 years at Cachan. Especially in the case of elasticity, these error estimators can become poor in situations where the material and the mesh are strongly anisotropic. The crucial point herein is the construction of equilibrated stress fields from the computed finite element solution. Therefore, in this paper, the approach and in particular this last point are re-examined. Several important modifications are introduced in the concepts and basic techniques. Hence, a new generation of error estimators which seem to be extremely robust upon initial applications has been generated.

[1]  B. H. V. Topping,et al.  Advances in finite element technology , 1996 .

[2]  Pierre Ladevèze,et al.  Mécanique non linéaire des structures , 1997 .

[3]  Pierre Ladevèze,et al.  ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .

[4]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[5]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[6]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[7]  I. Babuska,et al.  A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles , 1994 .

[8]  Pierre Ladevèze,et al.  A general method for recovering equilibrating element tractions , 1996 .

[9]  D. W. Kelly,et al.  Procedures for residual equilibration and local error estimation in the finite element method , 1989 .

[10]  P. Ladevèze,et al.  ERROR ESTIMATION AND ADAPTIVITY IN ELASTOPLASTICITY , 1996 .

[11]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[12]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[13]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[14]  P. Ladevèze,et al.  Sur une famille d'algorithmes en mécanique des structures , 1985 .

[15]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[16]  Andre Garon,et al.  A robust implementation of Zienkiewicz and Zhu's local patch recovery method , 1995 .