Surface localized polymer aligned liquid crystal lens.

The surface localized polymer alignment (SLPA) method allows complete control of the polar pretilt angle as a function of position in liquid crystal devices. In this work, a liquid crystal (LC) cylindrical lens is fabricated by the SLPA method. The focal length of the LC lens is set by the polymerization conditions, and can be varied by a non-segmented electrode. The LC lens does not require a shaped substrate, or complicated electrode patterns, to achieve a desired parabolic phase profile. Therefore, both fabrication and driving process are relatively simple.

[1]  Susumu Sato Liquid-Crystal Lens-Cells with Variable Focal Length , 1979 .

[2]  P. Bos,et al.  Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network , 2010 .

[3]  Hoi Sing Kwok,et al.  Tunable lens by spatially varying liquid crystal pretilt angles , 2011 .

[4]  Guoqiang Li,et al.  Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Mechanism of electric-field-induced segregation of additives in a liquid-crystal host. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  M. Ye,et al.  Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material. , 2008, Optics express.

[7]  Shin-Tson Wu,et al.  Liquid crystal lens with large focal length tunability and low operating voltage. , 2007, Optics express.

[8]  Achintya K. Bhowmik,et al.  Liquid-Crystal Technology Advances toward Future “True” 3-D Flat-Panel Displays , 2011 .

[9]  Neil A. Dodgson,et al.  Autostereoscopic 3D displays , 2005, Computer.

[10]  George Lawton 3D Displays without Glasses: Coming to a Screen near You , 2011, Computer.

[11]  P J Bos,et al.  Effects of low polymer content in a liquid-crystal microlens. , 1997, Optics letters.

[12]  P. Chao,et al.  11.1: An Auto‐Stereoscopic 3D Display Using Tunable Liquid Crystal Lens Array That Mimics Effects of GRIN Lenticular Lens Array , 2009 .

[13]  Yi-Pai Huang,et al.  Superzone Fresnel Liquid Crystal Lens for Temporal Scanning Auto-Stereoscopic Display , 2012, Journal of Display Technology.

[14]  Yung-Yuan Kao,et al.  A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths. , 2010, Optics express.

[15]  Shin-Tson Wu,et al.  Liquid-crystal microlens arrays using patterned polymer networks. , 2004, Optics letters.

[16]  Oscar Hendrikus Willemsen,et al.  2-D/3-D displays based on switchable lenticulars , 2008 .

[17]  Yi-Hsin Lin,et al.  An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes. , 2012, Optics express.

[18]  Tigran Galstian,et al.  Electrically tunable polymer stabilized liquid-crystal lens , 2005 .

[19]  Chi-Wei Chiu,et al.  Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes. , 2008, Optics express.

[20]  P. Sheng,et al.  Variable liquid crystal pretilt angles by nanostructured surfaces , 2006 .

[21]  P. Bos,et al.  Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer , 2012 .