Fast-pulsing longitudinal relaxation optimized techniques: Enriching the toolbox of fast biomolecular NMR spectroscopy

[1]  R. Freeman,et al.  Fast multidimensional NMR: radial sampling of evolution space. , 2005, Journal of magnetic resonance.

[2]  L. Frydman,et al.  Real-time 2D NMR identification of analytes undergoing continuous chromatographic separation. , 2004, Journal of the American Chemical Society.

[3]  A. Redfield,et al.  Dynamic range in Fourier transform proton magnetic resonance , 1975 .

[4]  Rémy Sounier,et al.  Sensitivity-optimized experiment for the measurement of residual dipolar couplings between amide protons , 2007, Journal of biomolecular NMR.

[5]  P. Wright,et al.  Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy , 1991 .

[6]  R. R. Ernst,et al.  Two‐dimensional spectroscopy. Application to nuclear magnetic resonance , 1976 .

[7]  M. Deschamps,et al.  Cooling overall spin temperature: protein NMR experiments optimized for longitudinal relaxation effects. , 2006, Journal of magnetic resonance.

[8]  Ray Freeman,et al.  The Radon Transform: A New Scheme for Fast Multidimensional NMR , 2004 .

[9]  K. Kazimierczuk,et al.  Optimization of random time domain sampling in multidimensional NMR. , 2008, Journal of magnetic resonance.

[10]  M. Billeter,et al.  Signal identification in NMR spectra with coupled evolution periods. , 2005, Journal of magnetic resonance.

[11]  Lucio Frydman,et al.  Single-scan NMR spectroscopy at arbitrary dimensions. , 2003, Journal of the American Chemical Society.

[12]  M. Zweckstetter,et al.  Mars - robust automatic backbone assignment of proteins , 2004, Journal of biomolecular NMR.

[13]  Gaohua Liu,et al.  NMR data collection and analysis protocol for high-throughput protein structure determination. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  V. Saudek,et al.  Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions , 1992, Journal of biomolecular NMR.

[15]  A. Pardi,et al.  Longitudinal-relaxation-enhanced NMR experiments for the study of nucleic acids in solution. , 2009, Journal of the American Chemical Society.

[16]  T. Szyperski,et al.  Principles and applications of GFT projection NMR spectroscopy , 2006, Magnetic resonance in chemistry : MRC.

[17]  K. Wüthrich,et al.  Semi-classical nuclear spin relaxation theory revisited for use with biological macromolecules , 2002 .

[18]  L. Kay,et al.  Addressing the overlap problem in the quantitative analysis of two dimensional NMR spectra: Application to 15N relaxation measurements , 2004, Journal of biomolecular NMR.

[19]  R. Konrat,et al.  Direct methods and residue type specific isotope labeling in NMR structure determination and model-driven sequential assignment , 2008, Journal of biomolecular NMR.

[20]  Alexander Grishaev,et al.  CLOUDS, a protocol for deriving a molecular proton density via NMR , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Beat Vögeli,et al.  Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy. , 2002, Journal of the American Chemical Society.

[22]  J. Feigon,et al.  Two-and three-dimensional HCN experiments for correlating base and sugar resonances in 15N, 13C-labeled RNA oligonucleotides , 1993, Journal of biomolecular NMR.

[23]  E. Schrödinger What is life? : the physical aspect of the living cell , 1944 .

[24]  A. J. Shaka,et al.  Progress on the two-dimensional filter diagonalization method. An efficient doubling scheme for two-dimensional constant-time NMR. , 2003, Journal of magnetic resonance.

[25]  Lucio Frydman,et al.  Progress in hyperpolarized ultrafast 2D NMR spectroscopy. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  Ray Freeman,et al.  Fast multidimensional NMR by polarization sharing , 2007, Magnetic resonance in chemistry : MRC.

[27]  K. Kazimierczuk,et al.  Random sampling of evolution time space and Fourier transform processing , 2006, Journal of biomolecular NMR.

[28]  Ray Freeman,et al.  Band-selective radiofrequency pulses , 1991 .

[29]  Ray Freeman,et al.  Distant echoes of the accordion: Reduced dimensionality, GFT-NMR, and projection-reconstruction of multidimensional spectra , 2004 .

[30]  J. Covès,et al.  Optimized set of two-dimensional experiments for fast sequential assignment, secondary structure determination, and backbone fold validation of 13C/15N-labelled proteins , 2003, Journal of biomolecular NMR.

[31]  I. Campbell,et al.  Short selective pulses for biochemical applications. , 1995, Journal of magnetic resonance. Series B.

[32]  Gaohua Liu,et al.  Probing structure and functional dynamics of (large) proteins with aromatic rings: L-GFT-TROSY (4,3)D HCCH NMR spectroscopy. , 2005, Journal of the American Chemical Society.

[33]  E. Olejniczak,et al.  Are methyl groups relaxation sinks in small proteins , 1990 .

[34]  W. Gronwald,et al.  Automated structure determination of proteins by NMR spectroscopy , 2004 .

[35]  G. Wider,et al.  3D 13C-15N-heteronuclear two-spin coherence spectroscopy for polypeptide backbone assignments in 13C-15N-double-labeled proteins , 1993, Journal of biomolecular NMR.

[36]  Vladislav Yu Orekhov,et al.  Removal of a time barrier for high-resolution multidimensional NMR spectroscopy , 2006, Nature Methods.

[37]  Nicolas Pannetier,et al.  Optimized 3D-NMR sampling for resonance assignment of partially unfolded proteins. , 2007, Journal of magnetic resonance.

[38]  B Brutscher,et al.  Assignment of NMR spectra of proteins using triple-resonance two-dimensional experiments , 1994, Journal of biomolecular NMR.

[39]  B. Brutscher,et al.  Determination of an Initial Set of NOE-Derived Distance Constraints for the Structure Determination of15N/13C-Labeled Proteins , 1995 .

[40]  T. Szyperski,et al.  GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. , 2003, Journal of the American Chemical Society.

[41]  A. Stern,et al.  Resolution and sensitivity of high field nuclear magnetic resonance spectroscopy , 2004, Journal of biomolecular NMR.

[42]  Ultrafast-based projection-reconstruction three-dimensional nuclear magnetic resonance spectroscopy. , 2007, The Journal of chemical physics.

[43]  E. Aragón,et al.  Fast 2D NMR ligand screening using Hadamard spectroscopy. , 2006, Journal of the American Chemical Society.

[44]  G. Wider Technical aspects of NMR Spectroscopy with biological macromolecules and studies of hydration in solution , 1998 .

[45]  Thomas Szyperski,et al.  Rapid NMR data collection. , 2005, Methods in enzymology.

[46]  Lucio Frydman,et al.  Interlaced Fourier transformation of ultrafast 2D NMR data. , 2005, Journal of magnetic resonance.

[47]  G. L. Kenyon,et al.  Studies of macromolecular structure by 13 C nuclear magnetic resonance. II. A specific labeling approach to the study of histidine residues in proteins. , 1973, Journal of the American Chemical Society.

[48]  Lucio Frydman,et al.  Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interactions. , 2004, Journal of magnetic resonance.

[49]  Paul Schanda,et al.  Speeding up three-dimensional protein NMR experiments to a few minutes. , 2006, Journal of the American Chemical Society.

[50]  Alan S. Stern,et al.  NMR Data Processing , 1996 .

[51]  R. Freeman,et al.  Hadamard NMR Spectroscopy , 2003 .

[52]  Harald Schwalbe,et al.  Time-resolved NMR studies of RNA folding. , 2007, Biopolymers.

[53]  I. Ayala,et al.  Fast two-dimensional NMR spectroscopy of high molecular weight protein assemblies. , 2009, Journal of the American Chemical Society.

[54]  Paul A. Keifer,et al.  Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity , 1992 .

[55]  Lewis E. Kay,et al.  Quantitative dynamics and binding studies of the 20S proteasome by NMR , 2007, Nature.

[56]  R. Freeman,et al.  Frequency-domain Hadamard spectroscopy. , 2003, Journal of magnetic resonance.

[57]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[58]  P. Schanda,et al.  HET‐SOFAST NMR for fast detection of structural compactness and heterogeneity along polypeptide chains , 2006, Magnetic resonance in chemistry : MRC.

[59]  R. Freeman,et al.  Projection-reconstruction of three-dimensional NMR spectra. , 2003, Journal of the American Chemical Society.

[60]  J. Prestegard,et al.  Quantitation of rapid proton-deuteron amide exchange using hadamard spectroscopy , 2004, Journal of biomolecular NMR.

[61]  Lucio Frydman,et al.  The acquisition of multidimensional NMR spectra within a single scan , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Lipari Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules , 1982 .

[63]  A. Pardi,et al.  Resolution-Enhanced Base-Type-Edited HCN Experiment for RNA , 2005, Journal of biomolecular NMR.

[64]  Ray Freeman,et al.  Wideband Excitation with Polychromatic Pulses , 1994 .

[65]  A. Sherry,et al.  Sensitivity enhancement of multidimensional NMR experiments by paramagnetic relaxation effects. , 2006, Journal of the American Chemical Society.

[66]  Shang-Te Danny Hsu,et al.  Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy , 2007, Proceedings of the National Academy of Sciences.

[67]  Thomas Szyperski,et al.  G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  D. LeMaster Deuteration in protein proton magnetic resonance. , 1989, Methods in enzymology.

[69]  K Wüthrich,et al.  Protein hydration in aqueous solution. , 1992, Faraday discussions.

[70]  Dominique Marion,et al.  Fast acquisition of NMR spectra using Fourier transform of non-equispaced data , 2005, Journal of biomolecular NMR.

[71]  L. Frydman,et al.  Ultrafast solid-state 2D NMR experiments via orientational encoding. , 2006, Journal of the American Chemical Society.

[72]  D. Jeannerat Computer optimized spectral aliasing in the indirect dimension of (1)H-(13)C heteronuclear 2D NMR experiments. A new algorithm and examples of applications to small molecules. , 2007, Journal of magnetic resonance.

[73]  Ray Freeman,et al.  Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. , 2004, Journal of the American Chemical Society.

[74]  A. Pardi,et al.  Measurement of imino 1H–1H residual dipolar couplings in RNA , 2009, Journal of biomolecular NMR.

[75]  J. Simorre,et al.  Amino acid-type edited NMR experiments for methyl-methyl distance measurement in 13C-labeled proteins. , 2004, Journal of the American Chemical Society.

[76]  R. Freeman,et al.  New methods for fast multidimensional NMR , 2003, Journal of biomolecular NMR.

[77]  P. Schanda,et al.  Hadamard frequency-encoded SOFAST-HMQC for ultrafast two-dimensional protein NMR. , 2006, Journal of magnetic resonance.

[78]  V. Sklenar,et al.  Transverse relaxation optimized triple-resonance NMR experiments for nucleic acids , 2000, Journal of biomolecular NMR.

[79]  Gerhard Wagner,et al.  Looking into live cells with in-cell NMR spectroscopy. , 2007, Journal of structural biology.

[80]  Alexander Eletsky,et al.  A novel strategy for the assignment of side-chain resonances in completely deuterated large proteins using 13C spectroscopy , 2003, Journal of biomolecular NMR.

[81]  P. Schanda,et al.  A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. , 2007, Journal of magnetic resonance.

[82]  K Wüthrich,et al.  Protein hydration in aqueous solution. , 1991, Science.

[83]  D. Marion Processing of ND NMR spectra sampled in polar coordinates: a simple Fourier transform instead of a reconstruction , 2006, Journal of biomolecular NMR.

[84]  S. Grzesiek,et al.  The Importance of Not Saturating H2o in Protein NMR : application to Sensitivity Enhancement and Noe Measurements , 1993 .

[85]  Paul Schanda,et al.  Protein folding and unfolding studied at atomic resolution by fast two-dimensional NMR spectroscopy , 2007, Proceedings of the National Academy of Sciences.

[86]  M. Billeter,et al.  MUNIN: A new approach to multi-dimensional NMR spectra interpretation , 2001, Journal of biomolecular NMR.

[87]  Brian E Coggins,et al.  High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN , 2008, Journal of biomolecular NMR.

[88]  Arthur G. Palmer,et al.  Sensitivity improvement in proton-detected two-dimensional heteronuclear relay spectroscopy , 1991 .

[89]  Jonas Fredriksson,et al.  PRODECOMPv3: decompositions of NMR projections for protein backbone and side-chain assignments and structural studies , 2008, Bioinform..

[90]  R. Ishima,et al.  Proton spin relaxation in biopolymers at high magnetic fields , 1990 .

[91]  Vladislav Yu Orekhov,et al.  Optimizing resolution in multidimensional NMR by three-way decomposition , 2003, Journal of biomolecular NMR.

[92]  Vladislav Yu Orekhov,et al.  Hyperdimensional NMR spectroscopy with nonlinear sampling. , 2008, Journal of the American Chemical Society.

[93]  Brian E Coggins,et al.  Filtered backprojection for the reconstruction of a high-resolution (4,2)D CH3-NH NOESY spectrum on a 29 kDa protein. , 2005, Journal of the American Chemical Society.

[94]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[95]  Ray Freeman,et al.  Fast multi-dimensional Hadamard spectroscopy. , 2003, Journal of magnetic resonance.

[96]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[97]  Paul T. Matsudaira,et al.  NMR structure of the 35-residue villin headpiece subdomain , 1997, Nature Structural Biology.

[98]  Martin Billeter,et al.  High-throughput analysis of protein NMR spectra , 2005 .

[99]  L. Frydman,et al.  Principles and progress in ultrafast multidimensional nuclear magnetic resonance. , 2009, Annual review of physical chemistry.

[100]  Hidekazu Hiroaki,et al.  High-resolution multi-dimensional NMR spectroscopy of proteins in human cells , 2009, Nature.

[101]  J. Simorre,et al.  Computer assignment of the backbone resonances of labelled proteins using two-dimensional correlation experiments , 1995, Journal of biomolecular NMR.

[102]  B. Brutscher,et al.  Hadamard amino-acid-type edited NMR experiment for fast protein resonance assignment. , 2008, Journal of the American Chemical Society.

[103]  Brian D Sykes,et al.  Smartnotebook: A semi-automated approach to protein sequential NMR resonance assignments , 2003, Journal of biomolecular NMR.

[104]  P. Schanda,et al.  UltraSOFAST HMQC NMR and the repetitive acquisition of 2D protein spectra at Hz rates. , 2007, Journal of the American Chemical Society.

[105]  R. R. Ernst,et al.  Application of Fourier Transform Spectroscopy to Magnetic Resonance , 1966 .

[106]  Kurt Wüthrich,et al.  APSY-NMR with proteins: practical aspects and backbone assignment , 2008, Journal of biomolecular NMR.

[107]  J. Boisbouvier,et al.  Parallel screening and optimization of protein constructs for structural studies , 2009, Protein science : a publication of the Protein Society.

[108]  J. Keeler,et al.  Minimizing Sensitivity Losses in Gradient-Selected 15N-1H HSQC Spectra of Proteins , 1994 .

[109]  Paul Schanda,et al.  Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. , 2005, Journal of the American Chemical Society.

[110]  D. LeMaster,et al.  Deuterium labelling in NMR structural analysis of larger proteins , 1990, Quarterly Reviews of Biophysics.

[111]  R. Brüschweiler,et al.  Covariance nuclear magnetic resonance spectroscopy. , 2004, The Journal of chemical physics.

[112]  G. Wider,et al.  Reduced dimensionality in triple-resonance NMR experiments , 1993 .

[113]  L. Frydman,et al.  Real-time monitoring of chemical transformations by ultrafast 2D NMR spectroscopy. , 2006, Journal of the American Chemical Society.

[114]  Cheryl H Arrowsmith,et al.  Solution NMR in structural genomics. , 2006, Current opinion in structural biology.

[115]  Manfred Spraul,et al.  Cryogenically cooled probes—a leap in NMR technology , 2005 .

[116]  M. Rance,et al.  Sensitivity improvement in isotropic mixing (TOCSY) experiments , 1990 .

[117]  D. LeMaster Uniform and selective deuteration in two-dimensional NMR of proteins. , 1990, Annual review of biophysics and biophysical chemistry.

[118]  Christopher M Dobson,et al.  Principles of protein folding, misfolding and aggregation. , 2004, Seminars in cell & developmental biology.

[119]  Folding of the KIX domain: characterization of the equilibrium analog of a folding intermediate using 15N/13C relaxation dispersion and fast 1H/2H amide exchange NMR spectroscopy. , 2008, Journal of molecular biology.

[120]  T. Malliavin,et al.  Gifa V. 4: A complete package for NMR data set processing , 1996, Journal of biomolecular NMR.

[121]  L. Mueller Alternate HMQC experiments for recording HN and HC-correlation spectra in proteins at high throughput , 2008, Journal of biomolecular NMR.

[122]  R. Freeman,et al.  Resolving ambiguities in two-dimensional NMR spectra: the 'TILT' experiment. , 2005, Journal of magnetic resonance.

[123]  Kurt Wüthrich,et al.  The use of cross-sections and of projections in two-dimensional NMR spectroscopy , 1978 .

[124]  G. Wider,et al.  Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures , 2005, Journal of biomolecular NMR.

[125]  Sebastian Hiller,et al.  Automated NMR assignment of protein side chain resonances using automated projection spectroscopy (APSY). , 2008, Journal of the American Chemical Society.

[126]  Paul Schanda,et al.  SOFAST-HMQC Experiments for Recording Two-dimensional Deteronuclear Correlation Spectra of Proteins within a Few Seconds , 2005, Journal of biomolecular NMR.

[127]  J. Simorre,et al.  Design of a Complete Set of Two-Dimensional Triple-Resonance Experiments for Assigning Labeled Proteins , 1994 .

[128]  H. Senn,et al.  Fast-HMQC using Ernst angle pulses: An efficient tool for screening of ligand binding to target proteins , 1997, Journal of biomolecular NMR.

[129]  Magnetic resonance in chemistry and biology : based on lectures at the Ampère International Summer School on Magnetic Resonance in Chemistry and Biology, Baško Polje, Yugoslavia, June 1971 , 1975 .

[130]  Arash Bahrami,et al.  High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. , 2005, Journal of the American Chemical Society.

[131]  A. Szabó,et al.  Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity , 1982 .

[132]  A. J. Shaka,et al.  The multidimensional filter diagonalization method. , 2000, Journal of magnetic resonance.

[133]  An improved ultrafast 2D NMR experiment: Towards atom-resolved real-time studies of protein kinetics at multi-Hz rates , 2009, Journal of biomolecular NMR.

[134]  Peter Güntert,et al.  Automated assignment of NMR chemical shifts using peak-particle dynamics simulation with the DYNASSIGN algorithm , 2009, Journal of biomolecular NMR.

[135]  Brian E. Coggins,et al.  (4,2)D Projection--reconstruction experiments for protein backbone assignment: application to human carbonic anhydrase II and calbindin D(28K). , 2005, Journal of the American Chemical Society.

[136]  R. Kaptein,et al.  Extended Flip-back Schemes for Sensitivity Enhancement in Multidimensional HSQC-type Out-and-back Experiments , 2005, Journal of biomolecular NMR.

[137]  V. Orekhov,et al.  Targeted acquisition for real-time NMR spectroscopy. , 2006, Journal of the American Chemical Society.

[138]  Dmitry M Korzhnev,et al.  Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. , 2008, Accounts of chemical research.

[139]  P. Schanda,et al.  Automated spectral compression for fast multidimensional NMR and increased time resolution in real-time NMR spectroscopy. , 2007, Journal of the American Chemical Society.

[140]  Philippe Pelupessy,et al.  Adiabatic single scan two-dimensional NMR spectrocopy. , 2003, Journal of the American Chemical Society.

[141]  David Neuhaus,et al.  The Nuclear Overhauser Effect in Structural and Conformational Analysis , 1989 .

[142]  Lucio Frydman,et al.  Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions , 2007 .