Van der Waerden's Theorem and Avoidability in Words
暂无分享,去创建一个
[1] P. Erdos. Some unsolved problems. , 1957 .
[2] Melvyn B. Nathanson,et al. Arithmetic Progressions Contained in Sequences with Bounded Gaps , 1980, Canadian Mathematical Bulletin.
[3] Tero Harju,et al. Combinatorics on Words , 2004 .
[4] J. Justin. Généralisation du Théorème de van der Waerden sur les Semi-groupes Répétitifs , 1972, J. Comb. Theory, Ser. A.
[5] A. B. Cook. Some unsolved problems. , 1952, Hospital management.
[6] Aaron Robertson,et al. Ramsey Theory on the Integers , 2014 .
[7] Veikko Keränen,et al. Abelian Squares are Avoidable on 4 Letters , 1992, ICALP.
[8] Lorenz Halbeisen,et al. AN APPLICATION OF VAN DER WAERDEN'S THEOREM IN ADDITIVE NUMBER THEORY , 2000 .
[9] P. Pleasants. Non-repetitive sequences , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] K. Roggenkamp,et al. Auslander-Reiten Sequences for "Nice" Torsion Theories of Artinian Algebras , 1980, Canadian Mathematical Bulletin.
[11] Giuseppe Pirillo,et al. On uniformly repetitive semigroups , 1994 .
[12] Ronald L. Graham,et al. ON THE GROWTH OF A VAN DER WAERDEN-LIKE FUNCTION , 2006 .
[13] Axel Thue. Selected mathematical papers of Axel Thue , 1977 .
[14] Jean Bourgain,et al. Roth’s theorem on progressions revisited , 2008 .
[15] Gwénaël Richomme,et al. Avoiding Abelian Powers in Binary Words with Bounded Abelian Complexity , 2010, Int. J. Found. Comput. Sci..