Occurrence of high-lying rotational bands in the interacting boson model

We observe an adiabatic separation of collective rotations built upon a subset of intrinsic vibrational states within the interacting boson model (IBM) in the parameter domains corresponding to axially deformed ground state. The effect is not limited only to the low-lying states and closely follows the variation of quantum and classical measures of regularity. It leads to the existence of rotational bands even close to the highest accessible energies in specific regions within the IBM symmetry triangle. We propose a more general effect of regular intrinsic dynamics on the adiabatic separation of intrinsic and collective motion.

[1]  R. Casten,et al.  SU(3) quasidynamical symmetry underlying the Alhassid-Whelan arc of regularity. , 2009, Physical review letters.

[2]  P. Cejnar,et al.  Transition from {gamma}-rigid to {gamma}-soft dynamics in the interacting boson model: Quasicriticality and quasidynamical symmetry , 2009 .

[3]  P. Stránský,et al.  Quantum chaos in the nuclear collective model. II. Peres lattices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  P. Stránský,et al.  Quantum chaos in the nuclear collective model: Classical-quantum correspondence. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  P. Cejnar,et al.  Peres Lattices in Nuclear Structure , 2008, 0810.2949.

[6]  P. Stránský,et al.  Classical and quantum properties of the semiregular arc inside the Casten triangle , 2007 .

[7]  S. Heinze,et al.  LETTER TO THE EDITOR: Monodromy and excited-state quantum phase transitions in integrable systems: collective vibrations of nuclei , 2006 .

[8]  P. Stránský,et al.  Classical chaos in the geometric collective model , 2006 .

[9]  S. Heinze,et al.  Evolution of spectral properties along the O(6)-U(5) transition in the interacting boson model. II. Classical trajectories , 2005, nucl-th/0504017.

[10]  P. Turner,et al.  Phase transitions and quasidynamical symmetry in nuclear collective models. II. The spherical vibrator to gamma-soft rotor transition in an SO(5)-invariant Bohr model , 2005 .

[11]  D. Rowe,et al.  Phase transitions and quasi-dynamical symmetry in nuclear collective models, III: The U(5) to SU(3) phase transition in the IBM , 2004 .

[12]  A. Algora,et al.  Deformation dependence of nuclear clusterization , 2004 .

[13]  A. Algora,et al.  Configuration-mixed effective SU(3) symmetries , 2002 .

[14]  Ch. Skokos,et al.  Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits , 2001 .

[15]  G. Maino,et al.  Regular and chaotic motions in nuclear dynamics , 2000 .

[16]  L. Reichl,et al.  Classical and quantum chaos in a circular billiard with a straight cut. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  P. Cejnar,et al.  Dynamical-symmetry content of transitional IBM-1 hamiltonians , 1998 .

[18]  P. Cejnar,et al.  WAVE-FUNCTION ENTROPY AND DYNAMICAL SYMMETRY BREAKING IN THE INTERACTING BOSON MODEL , 1998, chao-dyn/9802024.

[19]  Y. Alhassid,et al.  Chaotic properties of the interacting boson model , 1993 .

[20]  Whelan,et al.  Chaotic properties of the interacting-boson model: A discovery of a new regular region. , 1991, Physical review letters.

[21]  J. Wood,et al.  The SU(3) structure of rotational states in heavy deformed nuclei , 1991 .

[22]  G. Müller,et al.  Chaos in spin clusters: Quantum invariants and level statistics , 1990 .

[23]  D. Rowe,et al.  Dynamic structure and embedded representation in physics: The group theory of the adiabatic approximation , 1988 .

[24]  A. Leviatan Intrinsic and collective structure in the interacting boson model , 1987 .

[25]  A. Arima,et al.  The Interacting Boson Model: The interacting boson model-2 , 1987 .

[26]  P. Lipas,et al.  IBA consistent-Q formalism extended to the vibrational region , 1985 .

[27]  A. Peres New Conserved Quantities and Test for Regular Spectra , 1984 .

[28]  R. Casten,et al.  Revised Formulation of the Phenomenological Interacting Boson Approximation , 1982 .

[29]  J. Ginocchio,et al.  An intrinsic state for the interacting boson model and its relationship to the Bohr-Mottelson model , 1980 .

[30]  O. Scholten,et al.  ON SHAPES AND SHAPE PHASE-TRANSITIONS IN THE INTERACTING BOSON MODEL , 1980 .

[31]  Joseph N. Ginocchio,et al.  Relationship between the Bohr collective Hamiltonian and the interacting-boson model , 1980 .

[32]  O. Scholten,et al.  Classical Limit of the Interacting-Boson Model , 1980 .