A Proof System for Contact Relation Algebras

Contact relations have been studied in the context of qualitative geometry and physics since the early 1920s, and have recently received attention in qualitative spatial reasoning. In this paper, we present a sound and complete proof system in the style of Rasiowa and Sikorski (1963) for relation algebras generated by a contact relation.

[1]  P. Heath,et al.  On the Syllogism and Other Logical Writings. , 1966 .

[2]  Giangiacomo Gerla,et al.  Connection Structures: Grzegorczyk's and Whitehead's Definitions of Point , 1996, Notre Dame J. Formal Log..

[3]  Augustus de Morgan,et al.  On the Syllogism, No. IV., and on the Logic of Relations , 1864 .

[4]  Laure Vieu,et al.  Toward a Geometry of Common Sense: A Semantics and a Complete Axiomatization of Mereotopology , 1995, IJCAI.

[5]  Brandon Bennett,et al.  Modal Logics for Qualitative Spatial Reasoning , 1996, Log. J. IGPL.

[6]  Ian Pratt-Hartmann,et al.  Expressivity in Polygonal, Plane Mereotopology , 2000, J. Symb. Log..

[7]  Hajnal Andréka,et al.  The lattice of varieties of representable relation algebras , 1994, Journal of Symbolic Logic.

[8]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[9]  Vaughan R. Pratt,et al.  Dynamic algebras: Examples, constructions, applications , 1991, Stud Logica.

[10]  Ewa Orlowska,et al.  Relational Proof Systems for Modal Logics , 1996 .

[11]  M. Egenhofer,et al.  Assessing the Consistency of Complete and Incomplete Topological Information , 1993 .

[12]  Wojciech Buszkowski,et al.  Indiscernibility-Based Formalization of Dependencies in Information Systems , 1998 .

[13]  Max J. Egenhofer,et al.  Deriving the Composition of Binary Topological Relations , 1994, J. Vis. Lang. Comput..

[14]  Carus Paul The Foundation of Mathematics. , 1920 .

[15]  Giangiacomo Gerla,et al.  Connection Structures , 1991, Notre Dame J. Formal Log..

[16]  Hajnal Andréka,et al.  Decision problems for equational theories of relation algebras , 1997, Memoirs of the American Mathematical Society.

[17]  Ivo Düntsch Small integral relation algebras generated by a partial order , 1991 .

[18]  Achille C. Varzi Parts, Wholes, and Part-Whole Relations: The Prospects of Mereotopology , 1996, Data Knowl. Eng..

[19]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning with the Region Connection Calculus , 1997, GeoInformatica.

[20]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[21]  A. Tarski,et al.  A Formalization Of Set Theory Without Variables , 1987 .

[22]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[23]  E. Orlowska Relational interpretation of modal logics , 1988 .

[24]  Gail S. Huston,et al.  Table errata: “On the syllogism (IV) and on the logic of relations” (Trans. Cambridge Philos. Soc. 10 (1864), 331–358), by A. De Morgan , 1974 .

[25]  Ivo Düntsch,et al.  An Algebraic and Logical Approach to the Approximation of Regions , 2000, RelMiCS.

[26]  R. Labrecque The Correspondence Theory , 1978 .

[27]  Gunther Schmidt,et al.  A Necessary Relation Algebra for Mereotopology , 2001, Stud Logica.

[28]  C. Chree,et al.  Transactions of the Cambridge Philosophical Society , 1889 .

[29]  Anthony G. Cohn,et al.  Computing Transivity Tables: A Challenge For Automated Theorem Provers , 1992, CADE.

[30]  Oliver Lemon,et al.  Ontologies for Plane, Polygonal Mereotopology , 1997, Notre Dame J. Formal Log..

[31]  T. D. Laguna Point, Line, and Surface, as Sets of Solids , 1922 .

[32]  Bowman L. Clarke,et al.  A calculus of individuals based on "connection" , 1981, Notre Dame J. Formal Log..

[33]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[34]  E. Schröder Vorlesungen uber die Algebra der Logik , 1967 .

[35]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[36]  Timothy Williamson,et al.  Parts. A Study in Ontology , 1990 .

[37]  Ian Pratt-Hartmann,et al.  A Complete Axiom System for Polygonal Mereotopology of the Real Plane , 1998, J. Philos. Log..

[38]  Oliver Lemon,et al.  On the Incompleteness of Modal Logics of Space: Advancing Complete Modal Logics of Place , 1996, Advances in Modal Logic.

[39]  Ivo Düntsch,et al.  Relations Algebras in Qualitative Spatial Reasoning , 1999, Fundam. Informaticae.