Melatonin inhibits Gram-negative pathogens by targeting citrate synthase

[1]  Shilin Chen,et al.  Natural products for infectious microbes and diseases: an overview of sources, compounds, and chemical diversities , 2021, Science China Life Sciences.

[2]  Shun-Fa Yang,et al.  The potential remedy of melatonin on osteoarthritis , 2021, Journal of pineal research.

[3]  R. Hardeland,et al.  Bacteriostatic Potential of Melatonin: Therapeutic Standing and Mechanistic Insights , 2021, Frontiers in Immunology.

[4]  G. Gao,et al.  Identification of antibiotic resistance genes and associated mobile genetic elements in permafrost , 2021, Science China Life Sciences.

[5]  R. Peleg,et al.  Melatonin and the health of menopausal women: A systematic review , 2021, Journal of pineal research.

[6]  Yulong Yin,et al.  GABA transporter sustains IL-1β production in macrophages , 2021, Science Advances.

[7]  R. Hardeland Divergent Importance of Chronobiological Considerations in High- and Low-dose Melatonin Therapies , 2021, Diseases.

[8]  Longxiang Xie,et al.  The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae , 2020, International journal of environmental research and public health.

[9]  P. Hardwidge,et al.  Pasteurella multocida Pm0442 Affects Virulence Gene Expression and Targets TLR2 to Induce Inflammatory Responses , 2020, Frontiers in Microbiology.

[10]  K. Girish,et al.  Melatonin restores neutrophil functions and prevents apoptosis amid dysfunctional glutathione redox system , 2020, Journal of pineal research.

[11]  S. Kaye,et al.  Pseudomonas aeruginosa and microbial keratitis. , 2019, Journal of medical microbiology.

[12]  K. Nelson,et al.  A new antibiotic selectively kills Gram-negative pathogens , 2019, Nature.

[13]  A. Lauria,et al.  Melatonin reduces inflammatory response in human intestinal epithelial cells stimulated by interleukin‐1β , 2019, Journal of pineal research.

[14]  G. Zhu,et al.  l-Serine Lowers the Inflammatory Responses during Pasteurella multocida Infection , 2019, Infection and Immunity.

[15]  B. Wilson,et al.  Pasteurella multocida: Genotypes and Genomics , 2019, Microbiology and Molecular Biology Reviews.

[16]  M. Brouwer,et al.  Targeting the complement system in bacterial meningitis , 2019, Brain : a journal of neurology.

[17]  Chenguang Fan,et al.  Characterizing lysine acetylation of Escherichia coli type II citrate synthase , 2019, The FEBS journal.

[18]  T. Osanai,et al.  Citrate synthase from Synechocystis is a distinct class of bacterial citrate synthase , 2019, Scientific Reports.

[19]  Rendong Fang,et al.  NLRP3 inflammasome plays an important role in caspase-1 activation and IL-1β secretion in macrophages infected with Pasteurella multocida. , 2019, Veterinary microbiology.

[20]  H. Mobley,et al.  The Klebsiella pneumoniae citrate synthase gene, gltA, influences site specific fitness during infection , 2019, bioRxiv.

[21]  Wence Wang,et al.  Melatonin in macrophage biology: Current understanding and future perspectives , 2019, Journal of pineal research.

[22]  Á. San Millán Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. , 2018, Trends in microbiology.

[23]  R. Reiter,et al.  Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high‐fat diet‐fed mice , 2018, Journal of pineal research.

[24]  R. Hardeland Melatonin and inflammation—Story of a double‐edged blade , 2018, Journal of pineal research.

[25]  P. Sahota,et al.  Melatonin promotes sleep in mice by inhibiting orexin neurons in the perifornical lateral hypothalamus , 2018, Journal of pineal research.

[26]  R. Reiter,et al.  Melatonin alleviates weanling stress in mice: Involvement of intestinal microbiota , 2018, Journal of pineal research.

[27]  W. Eisenreich,et al.  Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium , 2018, Science.

[28]  L. Gan,et al.  Melatonin alleviates adipose inflammation through elevating α‐ketoglutarate and diverting adipose‐derived exosomes to macrophages in mice , 2018, Journal of pineal research.

[29]  Y. Paitan Current Trends in Antimicrobial Resistance of Escherichia coli. , 2018, Current topics in microbiology and immunology.

[30]  Hannah R. Meredith,et al.  Persistence and reversal of plasmid-mediated antibiotic resistance , 2017, Nature Communications.

[31]  C. R. Tirapelli,et al.  Melatonin: Antioxidant and modulatory properties in age‐related changes during Trypanosoma cruzi infection , 2017, Journal of pineal research.

[32]  J. Thaden,et al.  Gram-Negative Bacterial Infections: Research Priorities, Accomplishments, and Future Directions of the Antibacterial Resistance Leadership Group. , 2017, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[33]  S. Ding,et al.  A Biosurfactant-Inspired Heptapeptide with Improved Specificity to Kill MRSA. , 2017, Angewandte Chemie.

[34]  Lúcia Santos,et al.  Antibiotics in the aquatic environments: A review of the European scenario. , 2016, Environment international.

[35]  P. Ding,et al.  Antibiotic pollution threatens public health in China , 2015, The Lancet.

[36]  R. Reiter,et al.  Extrapineal melatonin: sources, regulation, and potential functions , 2014, Cellular and Molecular Life Sciences.

[37]  J. Boyce,et al.  Pasteurella multocida , 2012, Current Topics in Microbiology and Immunology.

[38]  J. Beal Pasteurella multocida , 2012, Current Topics in Microbiology and Immunology.

[39]  D. Cardinali,et al.  Melatonin—A pleiotropic, orchestrating regulator molecule , 2011, Progress in Neurobiology.

[40]  A. So,et al.  Tackling antibiotic resistance , 2010, BMJ : British Medical Journal.

[41]  C. Rock,et al.  Transcriptional regulation in bacterial membrane lipid synthesis This work was supported by National Institutes of Health Grant GM-34496, Cancer Center Support Grant (CORE) Grant CA21765, and the American Lebanese Associated Charities. Published, JLR Papers in Press, October 21, 2008. , 2009, Journal of Lipid Research.

[42]  C. W. Keevil,et al.  Validation of SYTO 9/Propidium Iodide Uptake for Rapid Detection of Viable but Noncultivable Legionella pneumophila , 2009, Microbial Ecology.

[43]  R. Reiter,et al.  Melatonin as an antibiotic: new insights into the actions of this ubiquitous molecule , 2008, Journal of pineal research.

[44]  C. Rock,et al.  Membrane lipid homeostasis in bacteria , 2008, Nature Reviews Microbiology.

[45]  Kate E. Jones,et al.  Global trends in emerging infectious diseases , 2008, Nature.

[46]  K. Nave,et al.  Reduced oxidative damage in ALS by high‐dose enteral melatonin treatment , 2006, Journal of pineal research.

[47]  D. Lovley,et al.  Characterization of Citrate Synthase from Geobacter sulfurreducens and Evidence for a Family of Citrate Synthases Similar to Those of Eukaryotes throughout the Geobacteraceae , 2005, Applied and Environmental Microbiology.

[48]  A. Fauci,et al.  The challenge of emerging and re-emerging infectious diseases , 2004, Nature.

[49]  G. Brayer,et al.  Probing the Roles of Key Residues in the Unique Regulatory NADH Binding Site of Type II Citrate Synthase of Escherichia coli* , 2003, Journal of Biological Chemistry.

[50]  G. Bubenik Gastrointestinal melatonin: localization, function, and clinical relevance. , 2002, Digestive diseases and sciences.

[51]  G. Brayer,et al.  Comparative analysis of folding and substrate binding sites between regulated hexameric type II citrate synthases and unregulated dimeric type I enzymes. , 2001, Biochemistry.

[52]  D. Stevens,et al.  Antibiotic susceptibilities of human isolates of Pasteurella multocida , 1979, Antimicrobial Agents and Chemotherapy.

[53]  J. Nordlund,et al.  The effects of oral melatonin on skin color and on the release of pituitary hormones. , 1977, The Journal of clinical endocrinology and metabolism.

[54]  J. Barchas,et al.  Acute Pharmacology of Melatonin , 1967, Nature.