Early Paleozoic tin mineralization in South China: Geology, geochronology and geochemistry of the Lijia tin deposit in the Miaoershan-Yuechengling composite batholith

[1]  Zuohai Feng,et al.  Caledonian Tin Mineralization in the Jiuwandashan Area, Northern Guangxi, South China , 2022, Minerals.

[2]  S. Salvi,et al.  Mica trace-element signatures: Highlighting superimposed W-Sn mineralizations and fluid sources , 2022, Chemical Geology.

[3]  M. Chiaradia,et al.  Pulsed exsolution of magmatic ore-forming fluids in tin-tungsten systems: a SIMS cassiterite oxygen isotope record , 2022, Mineralium Deposita.

[4]  X. Bi,et al.  Cassiterite oxygen isotopes in magmatic-hydrothermal systems: in situ microanalysis, fractionation factor, and applications , 2021, Mineralium Deposita.

[5]  A. Chauvet,et al.  Fluid mixing as primary trigger for cassiterite deposition: Evidence from in situ δ18O-δ11B analysis of tourmaline from the world-class San Rafael tin (-copper) deposit, Peru , 2021, Earth and Planetary Science Letters.

[6]  Qingfei Wang,et al.  Geology and genesis of the Debao Cu polymetallic skarn deposit, southwestern China , 2021 .

[7]  Wu-Xian Li,et al.  Tungsten mineralization during the evolution of a magmatic-hydrothermal system: Mineralogical evidence from the Xihuashan rare-metal granite in South China , 2021 .

[8]  Chunzeng Wang,et al.  The relationship between ductile shear zone and mineralization in the Jiufeng Sn deposit, northern Guangxi, South China: Evidence from structural analysis and cassiterite U-Pb dating , 2020 .

[9]  Guanghong Chen,et al.  In situ LA-ICP-MS analyses of mica and wolframite from the Maoping tungsten deposit, southern Jiangxi, China , 2020, Acta Geochimica.

[10]  Huayong Chen,et al.  Elemental behavior during chlorite alteration: New insights from a combined EMPA and LA-ICPMS study in porphyry Cu systems , 2020, Chemical Geology.

[11]  A. Schleicher,et al.  The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W–Sn–Cu deposit, Portugal , 2020, Mineralium Deposita.

[12]  K. Sein,et al.  Combined Zircon, Molybdenite, and Cassiterite Geochronology and Cassiterite Geochemistry of the Kuntabin Tin-Tungsten Deposit in Myanmar , 2020 .

[13]  Xiaofeng Li,et al.  Multistage magmatic-hydrothermal activity and W-Cu mineralization at Jiepai, Guangxi Zhuang Autonomous Region, South China: Constraints from geochronology and Nd-Sr-Hf-O isotopes , 2020 .

[14]  Xiaofeng Li,et al.  In situ LA-ICP-MS U-Pb geochronology and trace element analysis of hydrothermal titanite from the Jiepai W-Cu deposit, South China: Implications for W mineralization , 2020 .

[15]  Peng Liu,et al.  Fluid mixing leads to main-stage cassiterite precipitation at the Xiling Sn polymetallic deposit, SE China: evidence from fluid inclusions and multiple stable isotopes (H–O–S) , 2019, Mineralium Deposita.

[16]  D. Ma,et al.  Neoproterozoic tin mineralization in South China: geology and cassiterite U–Pb age of the Baotan tin deposit in northern Guangxi , 2019, Mineralium Deposita.

[17]  Wei Wang,et al.  Neoproterozoic S-type granites in the western Jiangnan Orogenic Belt, South China: Implications for petrogenesis and geodynamic significance , 2019, Lithos.

[18]  Tingting Liu,et al.  Metallogenic controls on the granite-related W–Sn deposits in the Hunan–Jiangxi region, China: evidence from zircon trace element geochemistry , 2019, Acta Geochimica.

[19]  Zhenhua Zhou,et al.  Ore-formation mechanism of the Weilasituo tin–polymetallic deposit, NE China: Constraints from bulk-rock and mica chemistry, He–Ar isotopes, and Re–Os dating , 2019, Ore Geology Reviews.

[20]  L. Neymark,et al.  U–Pb geochronology of tin deposits associated with the Cornubian Batholith of southwest England: Direct dating of cassiterite by in situ LA-ICPMS , 2019, Mineralium Deposita.

[21]  Yong-jun Shao,et al.  Silurian S-type granite-related W-(Mo) mineralization in the Nanling Range, South China: A case study of the Pingtan W-(Mo) deposit , 2019, Ore Geology Reviews.

[22]  M. Galiova,et al.  Diversity of lithium mica compositions in mineralized granite–greisen system: Cínovec Li-Sn-W deposit, Erzgebirge , 2019, Ore Geology Reviews.

[23]  Lei Xie,et al.  Episodic Nb–Ta mineralisation in South China: Constraints from in situ LA–ICP–MS columbite-tantalite U–Pb dating , 2019, Ore Geology Reviews.

[24]  J. Richards,et al.  Age and granite association of skarn W mineralization at Niutangjie district, South China Block , 2018, Ore Geology Reviews.

[25]  Lei Xie,et al.  Neoproterozoic mineralization in a hydrothermal cassiterite-sulfide deposit at Jiumao, northern Guangxi, South China: Mineral-scale constraints on metal origins and ore-forming processes , 2018 .

[26]  Zhen Yan,et al.  Zircon and cassiterite U-Pb ages, petrogeochemistry and metallogenesis of Sn deposits in the Sibao area, northern Guangxi: constraints on the neoproterozoic granitic magmatism and related Sn mineralization in the western Jiangnan Orogen, South China , 2018, Mineralogy and Petrology.

[27]  M. Lespinasse,et al.  The ore-forming magmatic-hydrothermal system of the Piaotang W-Sn deposit (Jiangxi, China) as seen from Li-mica geochemistry , 2018 .

[28]  Rongqing Zhang,et al.  Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia) , 2017 .

[29]  Wei-dong Sun,et al.  Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China , 2017 .

[30]  R. Shail,et al.  Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: precursor processes to magmatic-hydrothermal mineralisation , 2017 .

[31]  Rongqing Zhang,et al.  Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China , 2017 .

[32]  Chen Chen,et al.  Generation of Late Mesozoic Qianlishan A 2 -type granite in Nanling Range, South China: Implications for Shizhuyuan W-Sn mineralization and tectonic evolution , 2016 .

[33]  H. Fan,et al.  Fluid evolution and ore genesis of the giant Sanshandao gold deposit, Jiaodong gold province, China: Constrains from geology, fluid inclusions and H–O–S–He–Ar isotopic compositions , 2016 .

[34]  M. Lespinasse,et al.  Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China) , 2016 .

[35]  Di Zhang,et al.  A study on the Dushiling tungsten-copper deposit in the Miao’ershan-Yuechengling area, Northern Guangxi, China: Implications for variations in the mineralization of multi-aged composite granite plutons , 2016, Science China Earth Sciences.

[36]  T. Sun,et al.  Late Triassic U-bearing and barren granites in the Miao'ershan batholith, South China: Petrogenetic discrimination and exploration significance , 2016 .

[37]  Yue-heng Yang,et al.  Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios , 2016 .

[38]  Zhang Liguo,et al.  Origin of the Yuechengling Caledonian Granitic Batholith, Northeastern Guangxi: Constraint from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes , 2016 .

[39]  Jun Yan,et al.  S, C, O, H, and Pb isotopic studies for the Shuiyindong Carlin-type gold deposit, Southwest Guizhou, China: constraints for ore genesis , 2015, Chinese Journal of Geochemistry.

[40]  Lei Zhang,et al.  Caledonian ore-forming event in the Laojunshan mining district, SE Yunnan Province, China: In situ LA-MC-ICP-MS U-Pb dating on cassiterite , 2015 .

[41]  D. Zhang Quartz-vein Type Tungsten Mineralization Associated with the Indosinian (Triassic) Gaoling Granite,Miao'ershan Area,Northern Guangxi , 2015 .

[42]  M. Palmer,et al.  Reliability of LA-ICP-MS U-Pb dating of zircons with high U concentrations: A case study from the U-bearing Douzhashan Granite in South China , 2014 .

[43]  Rongqing Zhang,et al.  Skarn-type tungsten mineralization associated with the Caledonian (Silurian) Niutangjie granite, northern Guangxi, China , 2014, Science China Earth Sciences.

[44]  W. Griffin,et al.  Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China , 2014 .

[45]  Sun Xiaoyu,et al.  Zircon U-Pb Age, Geochemistry and Mineralization Prospective of the Caledonian Doushui Granitic Pluton in Southern Jiangxi Province , 2014 .

[46]  P. J. de Moel,et al.  Assessment of calculation methods for calcium carbonate saturation in drinking water for DIN 38404-10 compliance , 2013 .

[47]  D. Ma,et al.  Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China , 2013, Science China Earth Sciences.

[48]  T. Sun,et al.  Zircon U–Pb dating, trace element and Sr–Nd–Hf isotope geochemistry of Paleozoic granites in the Miao’ershan–Yuechengling batholith, South China: Implication for petrogenesis and tectonic–magmatic evolution , 2013 .

[49]  Zhiqiang Kang,et al.  Geochronology of the Limu W–Sn–Nb–Ta‐Bearing Granite Pluton in South China , 2013 .

[50]  Guowei Zhang,et al.  Phanerozoic tectonics of the South China Block: Key observations and controversies , 2013 .

[51]  N. Arndt,et al.  High Oxygen Fugacity and Slab Melting Linked to Cu Mineralization: Evidence from Dexing Porphyry Copper Deposits, Southeastern China , 2013, The Journal of Geology.

[52]  Mao Jingwen,et al.  Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings , 2013, Mineralium Deposita.

[53]  Kohei Sato Sedimentary Crust and Metallogeny of Granitoid Affinity: Implications from the Geotectonic Histories of the Circum‐Japan Sea Region, Central Andes and Southeastern Australia , 2012 .

[54]  W. Fan,et al.  Geochronological and geochemical constraints on the petrogenesis of middle Paleozoic Kwangsian massive granites in the eastern South China Block , 2012 .

[55]  Wei Lin,et al.  Phanerozoic tectonothermal events of the Xuefengshan Belt, central South China: Implications from UPb age and LuHf determinations of granites , 2012 .

[56]  J. Mao,et al.  Geology and vein tin mineralization in the Dadoushan deposit, Gejiu district, SW China , 2012, Mineralium Deposita.

[57]  Wei-dong Sun,et al.  Indosinian isotope ages of plutons and deposits in southwestern Miaoershan-Yuechengling, northeastern Guangxi and implications on Indosinian mineralization in South China , 2012 .

[58]  Z. Changqing,et al.  Geochemistry and petrogenesis of the Qinjia granite in Guangxi , 2012 .

[59]  Cheng Shun Zircon SHRIMP U-Pb Dating and Geochemical characteristics of Haiyangshan Monzogranitic Batholith,Northeast Guangxi , 2012 .

[60]  Jian‐tang Peng,et al.  In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China New constraints on the timing of tin-polymetallic mineralization , 2011 .

[61]  Lei Xie,et al.  Zircon U-Pb dating confirms existence of a Caledonian scheelite-bearing aplitic vein in the Penggongmiao granite batholith, South Hunan , 2011 .

[62]  M. Key LA-ICP-MS Zircon U-Pb Dating of the Qinjia Granite in Guangxi Province and Its Geologic Significance , 2011 .

[63]  Xu De-ming Zircon SHRIMP U-Pb Dating and Mineralization Significance of Yinshanling Granite,Northeastern Guangxi Province , 2011 .

[64]  L. Yongsheng,et al.  Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS , 2010 .

[65]  W. Yong,et al.  Molybdenite Re-Os isochron age of Debao Cu-Sn deposit in Guangxi and relation to Caledonian mineralization , 2010 .

[66]  Shi Shaohua Geochronology of the Shazijiang Uranium Ore Deposit,Northern Guangxi,China:U-Pb Ages of Pitchblende and Their Geological Significance , 2010 .

[67]  Shan Gao,et al.  Continental and Oceanic Crust Recycling-induced Melt^Peridotite Interactions in the Trans-North China Orogen: U^Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths , 2010 .

[68]  Yue-heng Yang,et al.  Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks , 2009 .

[69]  R. Hu,et al.  An experimental study of tin partition between melt and aqueous fluid in F/Cl-coexisting magma , 2009 .

[70]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[71]  Hu Qing,et al.  Precise Dating and Geological Significance of the Caledonian Shangyou Pluton in South Jiangxi Province , 2008 .

[72]  W. Griffin,et al.  Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen : dating the assembly of the Yangtze and Cathaysia Blocks , 2007 .

[73]  H. Keppler,et al.  Solubility of tin in (Cl, F)-bearing aqueous fluids at 700 °C, 140 MPa: A LA-ICP-MS study on synthetic fluid inclusions , 2007 .

[74]  Yong‐Fei Zheng,et al.  Calculation of oxygen isotope fractionation in magmatic rocks , 2003 .

[75]  I. Campbell,et al.  Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile , 2002 .

[76]  A. Neiva,et al.  Petrogenesis of Tin-bearing Granites from Ervedosa, Northern Portugal: The Importance of Magmatic Processes , 2002 .

[77]  H. Förster,et al.  Minor- and trace-element composition of trioctahedral micas: a review , 2001, Mineralogical Magazine.

[78]  Heinrich,et al.  Formation of a magmatic-hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions , 1998, Science.

[79]  D. London Estimating Abundances of Volatile and Other Mobile Components in Evolved Silicic Melts Through Mineral–Melt Equilibria , 1997 .

[80]  R. Trumbull,et al.  On Li-Bearing Micas: Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation , 1997, Mineralogical Magazine.

[81]  J. Icenhower,et al.  Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt , 1996 .

[82]  P. Blevin,et al.  Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia; the metallogeny of I- and S-type granites , 1995 .

[83]  R. Linnen,et al.  The effect of ƒo2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850°C and 2 kbar , 1995 .

[84]  J. Ferry Role of fluid flow in the contact metamorphism of siliceous dolomitic limestones-Reply to Hanson , 1995 .

[85]  Jeff R. Taylor,et al.  Cassiterite solubility, tin speciation, and transport in a magmatic aqueous phase , 1993 .

[86]  D. Dingwell,et al.  Effects of F, B2O3 and P2O5 on the solubility of water in haplogranite melts compared to natural silicate melts , 1993 .

[87]  C. Heinrich The chemistry of hydrothermal tin(-tungsten) ore deposition , 1990 .

[88]  D. London,et al.  Experimental reactions of amphibolite with boron-bearing aqueous fluids at 200 MPa: implications for tourmaline stability and partial melting in mafic rocks , 1989 .

[89]  B. Charoy,et al.  Contrasting evolution of fluorine- and boron-rich tin systems , 1987 .

[90]  H. Helgeson,et al.  Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: I. Calculation of the solubility of cassiterite at high pressures and temperatures , 1985 .

[91]  D. Manning,et al.  Petrogenesis of tourmaline granites and topaz granites ; the contribution of experimental data , 1984 .

[92]  B. Lehmann Metallogeny of tin; magmatic differentiation versus geochemical heritage , 1982 .

[93]  M. Pichavant An experimental study of the effect of boron on a water saturated haplogranite at 1 Kbar vapour pressure , 1981 .

[94]  H. Taylor,et al.  Water/rock interactions and the origin of H2O in granitic batholiths , 1977, Journal of the Geological Society.

[95]  H. Taylor The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition , 1974 .

[96]  R. Clayton,et al.  Oxygen isotope exchange between quartz and water , 1972 .

[97]  H. Craig Isotopic Variations in Meteoric Waters , 1961, Science.