Ageing behaviour of electrochemical double layer capacitors. Part I. Experimental study and ageing model

Different types of commercially available electrochemical double layer capacitors (EDLCs) were analysed in accelerated ageing tests by impedance spectroscopy. From these measurements the parameters of an impedance model were determined. The characteristic change of the impedance parameters is discussed and an ageing model for EDLCs is developed.

[1]  Mark F. Mathias,et al.  Effect of counterion type on charge transport at redox polymer-modified electrodes , 1993 .

[2]  Cyrus Ashtiani,et al.  Ultracapacitors for automotive applications , 2006 .

[3]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[4]  Rik W. De Doncker,et al.  Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications , 2003, 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003..

[5]  Rik W. De Doncker,et al.  Impedance-based Simulation Models for Energy Storage Devices in Advanced Automotive Power Systems , 2003 .

[6]  R. M. Nelms,et al.  Modeling double-layer capacitor behavior using ladder circuits , 2003 .

[7]  Rik W. De Doncker,et al.  Modeling the dynamic behavior of supercapacitors using impedance-spectroskopy , 2002 .

[8]  Cuong Ton-That,et al.  Self-discharge of carbon-based supercapacitors with organic electrolytes , 2000 .

[9]  Rik W. De Doncker,et al.  Impedance measurements on lead–acid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles , 2005 .

[10]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions—IV , 1963 .

[11]  R. D. Levie,et al.  The influence of surface roughness of solid electrodes on electrochemical measurements , 1965 .

[12]  Jianjun Niu,et al.  Comparative studies of self-discharge by potential decay and float-current measurements at C double-layer capacitor and battery electrodes , 2004 .

[13]  Thierry Aubert,et al.  Activated carbon–carbon nanotube composite porous film for supercapacitor applications , 2006 .

[14]  Dirk Uwe Sauer,et al.  Heat generation in double layer capacitors , 2006 .

[15]  T. Pajkossy,et al.  On the origin of capacitance dispersion of rough electrodes , 2000 .

[16]  E. Karden,et al.  A frequency-domain approach to dynamical modeling of electrochemical power sources , 2002 .

[17]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[18]  Rik W. De Doncker,et al.  Impedance-Based Loss Calculation and Thermal Modeling of Electrochemical Energy Storage Devices for Design Considerations of Automotive Power Systems , 2006 .

[19]  R.W. De Doncker,et al.  Modeling the dynamic behavior of supercapacitors using impedance spectroscopy , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[20]  T. Pajkossy,et al.  Impedance spectroscopy at interfaces of metals and aqueous solutions — Surface roughness, CPE and related issues , 2005 .

[21]  R. Kötz,et al.  Temperature behavior and impedance fundamentals of supercapacitors , 2006 .

[22]  Hamid Gualous,et al.  Supercapacitor thermal- and electrical-behaviour modelling using ANN , 2006 .

[23]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[24]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .