Branching Types

Although systems with intersection types have many unique capabilities, there has never been a fully satisfactory explicitly typed system with intersection types. We introduce ?B with branching types and types which are quantified over type selectors to provide an explicitly typed system with the same expressiveness as a system with intersection types. Typing derivations in ?B effectively squash together what would be separate parallel derivations in earlier systems with intersection types.

[1]  John C. Reynolds,et al.  Design of the programming language FORSYTHE , 1997 .

[2]  Joe B. Wells,et al.  A calculus with polymorphic and polyvariant flow types , 2002, J. Funct. Program..

[3]  Fabio Alessi,et al.  Strong Conjunction and Intersection Types , 1991, MFCS.

[4]  Mariangiola Dezani-Ciancaglini,et al.  An extension of the basic functionality theory for the λ-calculus , 1980, Notre Dame J. Formal Log..

[5]  Anindya Banerjee A modular, polyvariant and type-based closure analysis , 1997, ICFP '97.

[6]  Jeffrey Considine,et al.  Program Representation Size in an Intermediate Language with Intersection and Union Types , 2000, Types in Compilation.

[7]  J. B. Wells Typability is Undecidable for F+Eta , 1996 .

[8]  Torben Amtoft,et al.  Faithful Translations between Polyvariant Flows and Polymorphic Types , 2000, ESOP.

[9]  Peter W. O'Hearn,et al.  Algol-like Languages , 1997, Progress in Theoretical Computer Science.

[10]  Joe B. Wells,et al.  Typability and Type Checking in System F are Equivalent and Undecidable , 1999, Ann. Pure Appl. Log..

[11]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[12]  Mariangiola Dezani-Ciancaglini,et al.  Intersection and Union Types: Syntax and Semantics , 1995, Inf. Comput..

[13]  Mariangiola Dezani-Ciancaglini,et al.  The "Relevance" of Intersection and Union Types , 1997, Notre Dame J. Formal Log..

[14]  Joe B. Wells,et al.  A Typed Intermediate Language for Flow-Directed Compilation , 1997, TAPSOFT.

[15]  Luca Roversi,et al.  Intersection Logic , 2001, CSL.

[16]  Trevor Jim What are principal typings and what are they good for? , 1996, POPL '96.

[17]  Grigori Mints,et al.  The Completeness of Provable Realizability , 1989, Notre Dame J. Formal Log..

[18]  J. Roger Hindley Coppo-Dezani Types do not Correspond to Propositional Logic , 1984, Theor. Comput. Sci..

[19]  Assaf J. Kfoury,et al.  Principality and decidable type inference for finite-rank intersection types , 1999, POPL '99.

[20]  Franklyn Turbak,et al.  Strongly Typed Flow-Directed Representation Transformations. , 1997, ICFP 1997.

[21]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[22]  E. G. K. Lopez-Escobar,et al.  Proof functional connectives , 1985 .

[23]  B. Pierce Programming with intersection types, union types, and polymorphism , 1991 .

[24]  Pawel Urzyczyn,et al.  Type reconstruction in Fω , 1997, Mathematical Structures in Computer Science.

[25]  Betti Venneri,et al.  Intersection Types as Logical Formulae , 1994, J. Log. Comput..

[26]  A. J. Kfoury,et al.  A Direct Algorithm for Type Inference in the Rank 2 Fragment of the Second-Order -Calculus , 1993 .

[27]  Steffen van Bakel,et al.  Intersection Type Assignment Systems , 1995, Theor. Comput. Sci..

[28]  S. V. Bakel,et al.  Intersection type disciplines in Lambda Calculus and applicative term rewriting systems , 1993 .

[29]  Joe B. Wells,et al.  Strongly typed flow-directed representation transformations (extended abstract) , 1997, ICFP '97.

[30]  Betti Venneri,et al.  Hyperformulae, Parallel Deductions and Intersection Types , 2001, BOTH.

[31]  J. B. Wells Typability and type checking in the second-order Λ-calculus are equivalent and undecidable (Preliminary Draft) , 1993 .

[32]  Joe B. Wells,et al.  The Essence of Principal Typings , 2002, ICALP.

[33]  Joe B. Wells,et al.  Functioning without closure: type-safe customized function representations for standard ML , 2001, ICFP '01.

[34]  Jens Palsberg,et al.  From polyvariant flow information to intersection and union types , 1998, POPL '98.

[35]  J. B. Wells,et al.  Typability and type checking in the second-order /spl lambda/-calculus are equivalent and undecidable , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[36]  Harry G. Mairson,et al.  Relating typability and expressiveness in finite-rank intersection type systems (extended abstract) , 1999, ICFP '99.

[37]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[38]  G. Pottinger,et al.  A type assignment for the strongly normalizable |?-terms , 1980 .

[39]  Simona Ronchi Della Rocca,et al.  Principal Type Scheme and Unification for Intersection Type Discipline , 1988, Theor. Comput. Sci..