CFD Analysis of Fuel Atomization, Secondary Droplet Breakup and Spray Dispersion in the Premix Duct of a LPP Combustor

The two phase flow in the premix duct of a LPP combustor is computed using a Lagrangian droplet tracking method. To reproduce the characteristic spray structure of an air-assisted pressure-swirl atomizer, a sheet spray model is de-rived from measured sheet parameters and combined with an advanced concept for modeling secondary atomization effects. The sheet spray model is used for the discretization of the initial sheet fragmentation, whereas modeling of droplet deformation and breakup during trajectory integration accounts for air-blast effects on size distribution and dispersion of the spray. Droplet drag increase due to subcritical deformation is approximated by a semi-empirical correlation. Breakup modeling addresses the three distinct mechanisms bag, multimode and shear breakup which are typically encountered in fuel-air mixing processes of combustion engines. The models include mechanism-dependent deformation and breakup times, correlations for drag increase as well as size and velocity distribution functions of droplet fragments. Results of the simulation are compared to Phase Doppler measurements of the spray providing local distributions of droplet sizes, velocities and size-dependent liquid volume flux.

[1]  R. Schmehl,et al.  CFD Analysis of Spray Propagation and Evaporation Including Wall Film Formation and Spray/Film Interactions , 1999 .

[2]  Rolf D. Reitz,et al.  MODELING ATOMIZATION PROCESSES OF PRESSURE-SWIRL HOLLOW-CONE FUEL SPRAYS , 1997 .

[3]  R. Reitz,et al.  An analysis of the distortion and breakup mechanisms of high speed liquid drops , 1997 .

[4]  S. Wittig,et al.  Fuel preparation and emission characteristics of a pressure loaded LPP combustor , 1999 .

[5]  B. Noll,et al.  Evaporation of fuel droplets in turbulent combustor flow , 1988 .

[6]  M. Pilch,et al.  Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop , 1987 .

[7]  S. Wittig,et al.  Validation and application of a droplet evaporation model for real aviation fuel , 1999 .

[8]  A. J. Przekwas,et al.  Modeling of spray droplets deformation and breakup , 1993 .

[9]  R. Schmehl,et al.  Efficient Numerical Calculation of Evaporating Sprays in Combustion Chamber Flows , 1998 .

[10]  Gerard M. Faeth,et al.  Near-limit drop deformation and secondary breakup , 1992 .

[11]  H. C. Simmons The Correlation of Drop-Size Distributions in Fuel Nozzle Sprays—Part I: The Drop-Size/Volume-Fraction Distribution , 1976 .

[12]  S. Wittig,et al.  EXPERIMENTAL AND THEORETICAL STUDY OF DROPLET VAPORIZATION IN A HIGH PRESSURE ENVIRONMENT , 1997 .

[13]  Sigmar Wittig,et al.  Prediction of the Three-Dimensional Reacting Two-Phase Flow Within a Jet-Stabilized Combustor , 1996 .

[14]  Untersuchung mathematischer Modelle zur Beschreibung der Ausbreitung von Sprühstrahlen in turbulenten Strömungen , 1999 .

[15]  Sigmar Wittig,et al.  Computation of turbulent evaporating sprays: Eulerian versus Lagrangian approach , 1995 .

[16]  Klaus Dullenkopf,et al.  Droplet interaction with shear-driven liquid films: analysis of deposition and secondary droplet characteristics , 1999 .

[17]  Herbert Wiegand,et al.  Die Einwirkung eines ebenen Strömungsfeldes auf frei bewegliche Tropfen und ihren Widerstandsbeiwert im Reynoldszahlbereich von 50 bis 2000 , 1988 .