Correlation microstructural evolution with creep-rupture properties of a novel directionally solidified Ni-based superalloy M4706

[1]  P. Zhang,et al.  Strain-rate insensitive yield strength and deformation mechanisms of Ni-base superalloy CM247LC at 600 °C , 2021 .

[2]  P. Zhang,et al.  Microstructural stability and tensile properties of a new γ′-hardened Ni-Fe-base superalloy , 2021 .

[3]  H. Su,et al.  Correlation Between Phase Stability and Tensile Properties of the Ni-Based Superalloy MAR-M247 , 2020, Acta Metallurgica Sinica (English Letters).

[4]  P. Zhang,et al.  Creep behavior and deformation mechanisms of a novel directionally solidified Ni-base superalloy at 900 °C , 2019, Materials Characterization.

[5]  P. Zhang,et al.  Morphological evolution of γ′ precipitates in superalloy M4706 during thermal aging , 2018 .

[6]  Y. F. Xu,et al.  Tensile deformation mechanisms in a new directionally solidified Ni-base superalloy containing coarse γ′ precipitates at 650 °C , 2017 .

[7]  Jing Zhu,et al.  Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress , 2017 .

[8]  Y. Yuan,et al.  Tensile deformation mechanisms at various temperatures in a new directionally solidified Ni-base superalloy , 2017 .

[9]  T. Pollock,et al.  Alloy design for aircraft engines. , 2016, Nature materials.

[10]  Y. Guo,et al.  Microstructural changes and their effect on tensile properties of a Ni-Fe based alloy during long-term thermal exposure , 2016 .

[11]  Sheng-wu Guo,et al.  Tensile deformation behavior of a new Ni-base superalloy at room temperature , 2016 .

[12]  Lifeng Ma,et al.  Extraordinary plastic behaviour of the γ′ precipitate in a directionally solidified nickel-based superalloy , 2016 .

[13]  Xiao-feng Sun,et al.  Effects of stacking fault energy on the creep behaviors of Ni-base superalloy , 2014 .

[14]  L. Lou,et al.  The Effect of Long-Term Thermal Exposure on the Microstructure and Stress Rupture Property of a Directionally Solidified Ni-Based Superalloy , 2014, Metallurgical and Materials Transactions A.

[15]  P. Voorhees,et al.  Ostwald ripening in multicomponent alloys , 2013 .

[16]  M. Preuss,et al.  Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopy , 2012 .

[17]  Jianting Guo,et al.  The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure , 2012 .

[18]  T. Pollock,et al.  Optimal precipitate shapes in nickel-base γ–γ′ alloys , 2012 .

[19]  Zhao Ming-han Applications of Hot Isostatic Pressing on Cast Superalloy , 2012 .

[20]  G. Jianting THE CURRENT SITUATION OF APPLICATION AND DEVELOPMENT OF SUPERALLOYS IN THE FIELDS OF ENERGY INDUSTRY , 2010 .

[21]  H. Harada,et al.  Dislocation motion in the early stages of high-temperature low-stress creep in a single-crystal superalloy with a small lattice misfit , 2010 .

[22]  S. Roskosz,et al.  Methodology of quantitative evaluation of porosity, dendrite arm spacing and grain size in directionally solidified blades made of CMSX-6 nickel alloy , 2009 .

[23]  Tresa M. Pollock,et al.  Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys , 2009 .

[24]  H. Ye,et al.  The microstructural instability of a hot corrosion resistant superalloy during long-term exposure , 2008 .

[25]  Zi-kui Liu,et al.  Coarsening kinetics of γ′ precipitates in the Ni–Al–Mo system , 2008 .

[26]  Zi-kui Liu,et al.  Coarsening kinetics of c 0 precipitates in the Ni – Al – Mo system , 2008 .

[27]  X. Qin,et al.  Effects of Long-Term Thermal Exposure on the Microstructure and Properties of a Cast Ni-Base Superalloy , 2007 .

[28]  Zushu Hu,et al.  The influence of thermal exposure on the microstructure and stress rupture property of DZ951 nickel-base alloy , 2007 .

[29]  H. Harada,et al.  The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep , 2005 .

[30]  M. Kaufman,et al.  Mechanism of primary MC carbide decomposition in Ni-base superalloys , 2004 .

[31]  S. Asgari,et al.  Growth kinetics of γ′ precipitates in superalloy IN-738LC during long term aging , 2003 .

[32]  M. Heilmaier,et al.  Order strengthening in the cast nickel-based superalloy IN 100 at room temperature , 2001 .

[33]  C. Yuan,et al.  Creep-rupture behavior of a directionally solidified nickel-base superalloy , 2001 .

[34]  R. Reed,et al.  Heat treatment of UDIMET 720Li: the effect of microstructure on properties , 1999 .

[35]  T. Pollock,et al.  The influence of microstructure on the measurement of γ-γ′ lattice mismatch in single-crystal Ni-base superalloys , 1996 .

[36]  C. Schulze,et al.  Temperature dependence of deformation mechanisms in a single crystal nickel-base alloy with high volume fraction of γ′ phase , 1996 .

[37]  Frank Reginald Nunes Nabarro,et al.  Rafting in Superalloys , 1996 .

[38]  W. C. Johnson,et al.  Influence of coherency stress on microstructural evolution in model Ni-Al-Mo alloys , 1995 .

[39]  A. Argon,et al.  Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates , 1994 .

[40]  A. Argon,et al.  Creep resistance of CMSX-3 nickel base superalloy single crystals , 1992 .

[41]  T. Link,et al.  Shear mechanisms of the γ′ phase in single-crystal superalloys and their relation to creep , 1992 .

[42]  B. Reppich,et al.  Some new aspects concerning particle hardening mechanisms in γ' precipitating nickel-base alloys—II. Experiments , 1982 .

[43]  C. Carry,et al.  Apparent and effective creep parameters in single crystals of a nickel base superalloy—II. Secondary creep , 1978 .

[44]  C. Carry,et al.  Apparent and effective creep parameters in single crystals of a nickel base superalloy—I Incubation period , 1977 .

[45]  E. Nembach,et al.  Strengthening of the nimonic alloy PE 16 by ordered particles of Ni3(Al, Ti) , 1974 .

[46]  A. Ardell,et al.  On the modulated structure of aged Ni-Al alloys: with an Appendix On the elastic interaction between inclusions by J. D. Eshelby , 1966 .

[47]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[48]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[49]  F. C. Monkman An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep Rupture Tests , 1956 .