Biomacromolecules in microgels — Opportunities and challenges for drug delivery

[1]  P. Hansson,et al.  Distribution of cytochrome c in polyacrylate microgels , 2010 .

[2]  P. Hansson,et al.  Interaction between lysozyme and colloidal poly(NIPAM-co-acrylic acid) microgels. , 2010, Journal of colloid and interface science.

[3]  H. Bysell,et al.  Effect of charge density on the interaction between cationic peptides and oppositely charged microgels. , 2010, The journal of physical chemistry. B.

[4]  A. Schmidtchen,et al.  Effect of hydrophobicity on the interaction between antimicrobial peptides and poly(acrylic acid) microgels. , 2010, The journal of physical chemistry. B.

[5]  A. Schmidtchen,et al.  Oligotryptophan-tagged antimicrobial peptides and the role of the cationic sequence. , 2009, Biochimica et biophysica acta.

[6]  A. Kabanov,et al.  Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. , 2009, Angewandte Chemie.

[7]  A. Schmidtchen,et al.  Binding and release of consensus peptides by poly(acrylic acid) microgels. , 2009, Biomacromolecules.

[8]  Y. Nagasaki,et al.  Enhanced cytoplasmic delivery of siRNA using a stabilized polyion complex based on PEGylated nanogels with a cross-linked polyamine structure. , 2009, Biomacromolecules.

[9]  R. de Vries,et al.  Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients. , 2009, Biomacromolecules.

[10]  P. Hansson,et al.  Mechanism of lysozyme uptake in poly(acrylic acid) microgels. , 2009, The journal of physical chemistry. B.

[11]  A. Schmidtchen,et al.  Boosting Antimicrobial Peptides by Hydrophobic Oligopeptide End Tags* , 2009, The Journal of Biological Chemistry.

[12]  W. H. Blackburn,et al.  Peptide-functionalized nanogels for targeted siRNA delivery. , 2009, Bioconjugate chemistry.

[13]  H. Bysell,et al.  Interactions between homopolypeptides and lightly cross-linked microgels. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[14]  H. Bysell,et al.  Transport of poly-L-lysine into oppositely charged poly(acrylic acid) microgels and its effect on gel deswelling. , 2008, Journal of colloid and interface science.

[15]  Robert Pelton,et al.  Impact of microgel morphology on functionalized microgel-drug interactions. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[16]  P. Hansson,et al.  Interaction between lysozyme and poly(acrylic acid) microgels. , 2007, Journal of colloid and interface science.

[17]  R. K. Shah,et al.  Monodisperse Thermoresponsive Microgels with Tunable Volume‐Phase Transition Kinetics , 2007 .

[18]  K. Matyjaszewski,et al.  Synthesis and Biodegradation of Nanogels as Delivery Carriers for Carbohydrate Drugs , 2007 .

[19]  A. Sharma,et al.  Photoregulation of drug release in azo-dextran nanogels. , 2007, International journal of pharmaceutics.

[20]  Joseph M. DeSimone,et al.  Nanoparticle Drug Delivery Platform , 2007 .

[21]  K. Tam,et al.  Application of drug selective electrode in the drug release study of pH-responsive microgels. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[22]  Gleb B. Sukhorukov,et al.  Self‐Rupturing and Hollow Microcapsules Prepared from Bio‐polyelectrolyte‐Coated Microgels , 2007 .

[23]  Zhibing Hu,et al.  Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. , 2007, Angewandte Chemie.

[24]  L. Lyon,et al.  1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels. , 2006, Biomacromolecules.

[25]  Martin Malmsten,et al.  Soft drug delivery systems. , 2006, Soft matter.

[26]  E. Kumacheva,et al.  MICROGELS: Old Materials with New Applications , 2006 .

[27]  H. Bysell,et al.  Visualizing the interaction between poly-L-lysine and poly(acrylic acid) microgels using microscopy techniques: effect of electrostatics and peptide size. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[28]  E. Kumacheva,et al.  Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. , 2006, Biomacromolecules.

[29]  T. Aminabhavi,et al.  pH sensitive interpenetrating network microgels of sodium alginate-acrylic acid for the controlled release of ibuprofen , 2006 .

[30]  S. Armes,et al.  Efficient synthesis of sterically stabilized pH-responsive microgels of controllable particle diameter by emulsion polymerization. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[31]  E. Kumacheva,et al.  Biofunctionalized pH‐Responsive Microgels for Cancer Cell Targeting: Rational Design , 2006 .

[32]  Ying Zhang,et al.  A novel microgel and associated post-fabrication encapsulation technique of proteins. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[33]  Dieter Braun,et al.  The role of metal nanoparticles in remote release of encapsulated materials. , 2005, Nano letters.

[34]  K. Schug,et al.  Noncovalent binding between guanidinium and anionic groups: focus on biological- and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues. , 2005, Chemical reviews.

[35]  Daniel E. Otzen,et al.  Protein drug stability: a formulation challenge , 2005, Nature Reviews Drug Discovery.

[36]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[37]  Benno Radt,et al.  Light-responsive polyelectrolyte/gold nanoparticle microcapsules. , 2005, The journal of physical chemistry. B.

[38]  T. A. Hatton,et al.  Kinetics of swelling of polyether-modified poly(acrylic acid) microgels with permanent and degradable cross-links. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[39]  Benno Radt,et al.  Optically Addressable Nanostructured Capsules , 2004 .

[40]  Xiaodong Fan,et al.  A cyclodextrin microgel for controlled release driven by inclusion effects , 2004 .

[41]  S. Armes,et al.  Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[42]  Jean Chmielewski,et al.  Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. , 2004, Journal of the American Chemical Society.

[43]  Fredrik Carlsson,et al.  Lysozyme adsorption to charged surfaces : A Monte Carlo Study , 2004 .

[44]  B. Saunders On the structure of poly(N-isopropylacrylamide) microgel particles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[45]  Jeffrey S. Moore,et al.  Multitechnique characterization of fatty acid-modified microgels. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[46]  Takashi Miyata,et al.  Preparation of reversibly glucose-responsive hydrogels by covalent immobilization of lectin in polymer networks having pendant glucose , 2004, Journal of biomaterials science. Polymer edition.

[47]  Thomas Linden,et al.  Mechanism and kinetics of protein transport in chromatographic media studied by confocal laser scanning microscopy. Part I. The interplay of sorbent structure and fluid phase conditions. , 2003, Journal of chromatography. A.

[48]  Kyle N. Plunkett,et al.  Swelling Kinetics of Disulfide Cross-Linked Microgels , 2003 .

[49]  Jean M. J. Fréchet,et al.  A macromolecular delivery vehicle for protein-based vaccines: Acid-degradable protein-loaded microgels , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Malmsten,et al.  Protein-polyelectrolyte cluster formation and redissolution: a Monte Carlo study. , 2003, Journal of the American Chemical Society.

[51]  Martin Malmsten,et al.  Surfactants and Polymers in Drug Delivery , 2002 .

[52]  T. A. Hatton,et al.  Dually Responsive Microgels from Polyether-Modified Poly(acrylic acid): Swelling and Drug Loading , 2002 .

[53]  Kinam Park,et al.  Modulated insulin delivery from glucose-sensitive hydrogel dosage forms. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[54]  Fredrik Carlsson,et al.  Monte Carlo Simulations of Lysozyme Self-Association in Aqueous Solution , 2001 .

[55]  D Gan,et al.  Tunable swelling kinetics in core--shell hydrogel nanoparticles. , 2001, Journal of the American Chemical Society.

[56]  D Needham,et al.  Lipid-coated microgels for the triggered release of doxorubicin. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[57]  R. Pelton,et al.  Temperature-sensitive aqueous microgels. , 2000, Advances in colloid and interface science.

[58]  M. Meyerhoff,et al.  Polyelectrolyte-surfactant complexes: An aqueous titration method to model ion-pairing within polymeric membranes of polyion-sensitive electrodes , 2000 .

[59]  Malmsten,et al.  Confocal Microscopy Studies of Trypsin Immobilization on Porous Glycidyl Methacrylate Beads. , 1999, Journal of colloid and interface science.

[60]  D. Needham,et al.  Investigation of the Swelling Response and Drug Loading of Ionic Microgels: The Dependence on Functional Group Composition , 1999 .

[61]  Naoya Ogata,et al.  Adenosine-Induced Changes of the Phase Transition of Poly(6-(acryloyloxymethyl)uracil) Aqueous Solution , 1999 .

[62]  D. Needham,et al.  Investigation of the Swelling Response and Loading of Ionic Microgels with Drugs and Proteins: The Dependence on Cross-Link Density , 1999 .

[63]  Takashi Miyata,et al.  A reversibly antigen-responsive hydrogel , 1999, Nature.

[64]  Y. Fukunishi,et al.  A novel microbial infection-responsive drug release system. , 1999, Journal of pharmaceutical sciences.

[65]  T. Miyata,et al.  Preparation of an Antigen-Sensitive Hydrogel Using Antigen-Antibody Bindings , 1999 .

[66]  M. Malmsten,et al.  Formation of Adsorbed Protein Layers. , 1998, Journal of colloid and interface science.

[67]  Yoshihisa Suzuki,et al.  A new drug delivery system with controlled release of antibiotic only in the presence of infection. , 1998, Journal of biomedical materials research.

[68]  Needham,et al.  pH and Ion-Triggered Volume Response of Anionic Hydrogel Microspheres. , 1998, Macromolecules.

[69]  B. Vincent,et al.  Equilibrium and kinetic aspects of the pH-dependent swelling of poly(2-vinylpyridine-co-styrene) microgels , 1997 .

[70]  G. J. Fleer,et al.  Polymers at Interfaces , 1993 .

[71]  Yoshihiro Ito,et al.  An insulin-releasing system that is responsive to glucose , 1989 .

[72]  Allan S. Hoffman,et al.  Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics , 1987 .

[73]  Toyoichi Tanaka,et al.  Kinetics of swelling of gels , 1979 .

[74]  K. Wagner,et al.  Properties of basic amino-acid residues. Nucleotide--poly(amino acid)interaction. , 1974, European journal of biochemistry.

[75]  Robert Langer,et al.  Moving smaller in drug discovery and delivery , 2002, Nature Reviews Drug Discovery.

[76]  H. Brøndsted,et al.  Current applications of polysaccharides in colon targeting. , 1996, Critical reviews in therapeutic drug carrier systems.

[77]  R. K. Shah,et al.  Fabrication of Monodisperse Thermosensitive Microgels and Gel Capsules in Microfluidic Devices Highlight Www.rsc.org/softmatter | Soft Matter , 2022 .