On s-intersecting curves and related problems

Let <i>P</i> be a set of <i>n</i> points in the plane and let <i>C</i> be a family of simple closed curves in the plane each of which avoids the points of <i>P</i>. For every curve <i>C</i> ∈ <i>C</i> we denote by disc<i>(C)</i> the region in the plane bounded by <i>C</i>. Fix an integer <i>s</i> > 0 and assume that every two curves in <i>C</i> intersect at most <i>s</i> times and that for every two curves <i>C</i>,<i>C'</i> ∈ <i>C</i> the intersection disc<i>(C)</i> ∩ disc<i>(C')</i> is a connected set. We consider the family <i>F</i> = {<i>P</i> ∩ disc<i>(C)</i> | <i>C</i> ∈ <i>C</i>}. When <i>s</i> is even, we provide sharp bounds, in terms of <i>n, s,</i> and <i>k</i>, for the number of sets in <i>F</i> of cardinality <i>k</i>, assuming that ∩<sub><i>C ∈C</i></sub>disc<i>(C)</i> is nonempty. In particular, we provide sharp bounds for the number of halving pseudo-parabolas for a set of <i>n</i> points in the plane. Finally, we consider the VC-dimension of <i>F</i> and show that <i>F</i> has VC-dimension at most <i>s+1</i>.

[1]  April,et al.  Pseudoline Arrangements : Duality , Algorithms , and Applications , 2001 .

[2]  Géza Tóth,et al.  Point Sets with Many k-Sets , 2000, SCG '00.

[3]  N. Alon,et al.  Piercing convex sets and the hadwiger-debrunner (p , 1992 .

[4]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[5]  Micha Sharir,et al.  Pseudo-line arrangements: duality, algorithms, and applications , 2002, SODA '02.

[6]  E. Helly,et al.  Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten , 1930 .

[7]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[8]  Noga Alon,et al.  Transversal numbers for hypergraphs arising in geometry , 2002, Adv. Appl. Math..

[9]  John Hershberger,et al.  Sweeping arrangements of curves , 1989, SCG '89.

[10]  Tamal K. Dey,et al.  Improved Bounds for Planar k -Sets and Related Problems , 1998, Discret. Comput. Geom..

[11]  J. Molnár,et al.  Über Eine Verallgemeinerung Auf die Kugelfläche Eines Topologischen Satzes von Helly , 1956 .

[12]  Hisao Tamaki,et al.  A Characterization of Planar Graphs by Pseudo-Line Arrangements , 2003 .

[13]  Micha Sharir,et al.  Lenses in arrangements of pseudo-circles and their applications , 2004, JACM.

[14]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[15]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .