Implementation and identification of Preisach type hysteresis models with Everett Function in closed form

Abstract The Preisach function is considered as a product of two special one dimensional functions, which allows the closed form evaluation of the Everett integral. The deduced closed form expressions are included in Preisach models, in particular in the static model, moving model and a rate dependent hysteresis model, which can simulate the frequency dependence of the magnetization process. The details of the freely available implementations, which are available online are presented. The identification of the model parameters and the accuracy to describe the magnetization process are discussed and demonstrated by fitting measured data. Transient electric circuit simulation with hysteresis demonstrates the applicability of the developed models.

[1]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[2]  Super-Lorentzian Preisach function and its applicability to model scalar hysteresis , 2003 .

[3]  Jenõ Takács,et al.  Mathematics of hysteretic phenomena : the T(x) model for the description of hysteresis , 2003 .

[4]  G. Finocchio,et al.  Analytical solution of Everett integral using Lorentzian Preisach function approximation , 2006 .

[5]  A. Stancu,et al.  Characterization of static hysteresis models using first-order reversal curves diagram method , 2006 .

[6]  Amália Iványi,et al.  Magnetic force computation with hysteresis , 2005 .

[7]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1991 .

[8]  Ke Xu,et al.  Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling , 2015 .

[9]  E. Della Torre,et al.  Identification of the Preisach probability functions for soft magnetic materials , 2001 .

[10]  G. Kádár,et al.  On the Preisach function of ferromagnetic hysteresis , 1987 .

[11]  D. Jiles,et al.  Theory of ferromagnetic hysteresis (invited) , 1984 .

[12]  Zsolt Szabo,et al.  Equivalence of Magnetic Metamaterials and Composites in the View of Effective Medium Theories , 2014, IEEE Transactions on Magnetics.

[13]  Jenõ Takács,et al.  The Everett Integral and Its Analytical Approximation , 2012 .

[14]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[15]  W. M. Rucker,et al.  Identification procedures of Preisach model , 2002 .

[16]  Zsolt Szabó,et al.  Preisach functions leading to closed form permeability , 2006 .

[17]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[18]  E. Della Torre,et al.  Reversible magnetization and Lorentzian function approximation , 2003 .

[19]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[20]  János Füzi,et al.  Computationally efficient rate dependent hysteresis model , 1999 .

[21]  J. Fuzi,et al.  Analytical approximation of Preisach distribution functions , 2003 .

[22]  Z. Szabó,et al.  Temperature dependence of the preisach function for ultrasoft nanocrystalline alloys , 2006 .

[23]  Miklós Kuczmann,et al.  Neural network model of magnetic hysteresis , 2002 .

[24]  G. Bertotti,et al.  Description of magnetic interactions and Henkel plots by the Preisach hysteresis model , 1994 .

[25]  Ferenc Vajda,et al.  Modeling magnetic materials with the complete moving hysteresis model , 1994 .

[26]  Hierarchy of scalar hysteresis models for magnetic recording media , 1996 .

[27]  János Füzi,et al.  Identification procedures for scalar Preisach model , 2004 .

[28]  Thanh Nho Do,et al.  A survey on hysteresis modeling, identification and control , 2014 .