A Deterministic Polynomial Time Algorithm for Non-commutative Rational Identity Testing

Symbolic matrices in non-commuting variables, and the related structural and algorithmic questions, have a remarkable number of diverse origins and motivations. They arise independently in (commutative) invariant theory and representation theory, linear algebra, optimization, linear system theory, quantum information theory, and naturally in non-commutative algebra. In this paper we present a deterministic polynomial time algorithm for testing if a symbolic matrix in non-commuting variables over Q is invertible or not. The analogous question for commuting variables is the celebrated polynomial identity testing (PIT) for symbolic determinants. In contrast to the commutative case, which has an efficient probabilistic algorithm, the best previous algorithm for the non-commutative setting required exponential time [1] (whether or not randomization is allowed). The main (simple!) technical contribution of this paper is an analysis of an existing “operator scaling” algorithm due to Gurvits [2], which solved some special cases of the same problem we do (these already include optimization problems like matroid intersection). This analysis of the running time of Gurvits' algorithm combines results from some of these different fields. It lower bounds a parameter of quantum maps called capacity, via degree bounds from algebraic geometry on the Left Right group action, which in turn is relevant due to certain characterization of the free skew (non-commutative) field. Via the known connections above, our algorithm efficiently solves several problems in different areas which had only exponential-time algorithms prior to this work. These include the “word problem” for the free skew field (namely identity testing for rational expressions over non-commuting variables), testing if a quantum operator is “rank decreasing”, and the membership problem in the null-cone of a natural group action arising in Geometric Complexity Theory (GCT). Moreover, extending our algorithm to actually compute the non-commutative rank of a symbolic matrix, yields an efficient factor-2 approximation to the standard commutative rank. This naturally suggests the challenge to improve this approximation factor, noting that a fully polynomial approximation scheme may lead to a deterministic PIT algorithm. Finally, our algorithm may also be viewed as efficiently solving a family of structured systems of quadratic equations, which seem general enough to encode interesting decision and optimization problems1.

[1]  Amir Shpilka,et al.  Quasipolynomial-Time Identity Testing of Non-commutative and Read-Once Oblivious Algebraic Branching Programs , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[2]  Paul M. Cohn,et al.  The Embedding of Firs in Skew Fields , 1971 .

[3]  Leonid Gurvits,et al.  Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications , 2005, STOC '06.

[4]  Alex Samorodnitsky,et al.  A deterministic polynomial-time algorithm for approximating mixed discriminant and mixed volume , 2000, STOC '00.

[5]  Hanspeter Kraft,et al.  Classical invariant theory: a primer , 1996 .

[6]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[7]  Harm Derksen,et al.  Computational Invariant Theory , 2002 .

[8]  Nancy A. Lynch,et al.  Proceedings of the tenth annual ACM symposium on Theory of computing , 1978 .

[9]  Amir Shpilka,et al.  Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing , 2013, APPROX-RANDOM.

[10]  Amir Yehudayoff,et al.  Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..

[11]  Peter Malcolmson,et al.  A Prime Matrix Ideal Yields a Skew Field , 1978 .

[12]  E. Formanek,et al.  Generating the ring of matrix invariants , 1986 .

[13]  Laurent Hyafil,et al.  On the parallel evaluation of multivariate polynomials , 1978, SIAM J. Comput..

[14]  Ran Raz,et al.  Deterministic polynomial identity testing in non-commutative models , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[15]  Daniel A. Spielman,et al.  Randomness efficient identity testing of multivariate polynomials , 2001, STOC '01.

[16]  Roy Meshulam,et al.  Spaces of Singular Matrices and Matroid Parity , 2002, Eur. J. Comb..

[17]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[18]  James F. Geelen,et al.  An Algebraic Matching Algorithm , 2000, Comb..

[19]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[20]  P. M. COHN,et al.  On the Construction of the Free Field , 1999, Int. J. Algebra Comput..

[21]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[22]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[23]  A. S. Amitsur,et al.  Minimal identities for algebras , 1950 .

[24]  Youming Qiao,et al.  Non-commutative Edmonds’ problem and matrix semi-invariants , 2015, computational complexity.

[25]  G. Higman,et al.  The Units of Group‐Rings , 1940 .

[26]  László Lovász,et al.  Singular spaces of matrices and their application in combinatorics , 1989 .

[27]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[28]  Jan Draisma,et al.  The Hilbert Null-cone on Tuples of Matrices and Bilinear Forms , 2006 .

[29]  Noam Nisan,et al.  Lower bounds for non-commutative computation , 1991, STOC '91.

[30]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[31]  Youming Qiao,et al.  Constructive noncommutative rank computation in deterministic polynomial time over fields of arbitrary characteristics , 2015, ArXiv.

[32]  Avi Wigderson,et al.  Non-commutative circuits and the sum-of-squares problem , 2010, STOC '10.

[33]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[34]  Joe W. Harris,et al.  Vector spaces of matrices of low rank , 1988 .

[35]  J. Dieudonné,et al.  Sur une généralisation du groupe orthogonal à quatre variables , 1948 .

[36]  L. Hua,et al.  Some Properties of a Sfield. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Christophe Reutenauer,et al.  COMMUTATIVE/NONCOMMUTATIVE RANK OF LINEAR MATRICES AND SUBSPACES OF MATRICES OF LOW RANK , 2004 .

[38]  Christophe Reutenauer,et al.  Inversion height in free fields , 1996 .

[39]  R. Rado A THEOREM ON INDEPENDENCE RELATIONS , 1942 .

[40]  Michael O. Rabin,et al.  Recursive Unsolvability of Group Theoretic Problems , 1958 .

[41]  Mike D. Atkinson,et al.  LARGE SPACES OF MATRICES OF BOUNDED RANK , 1980 .

[42]  P. M. Cohn,et al.  The word problem for free fields , 1973, Journal of Symbolic Logic.

[43]  D. M.,et al.  SPACES OF MATRICES WITH SEVERAL ZERO EIGENVALUES , 2006 .

[44]  L. Gurvits,et al.  The Deeation-innation Method for Certain Semideenite Programming and Maximum Determinant Completion Problems , 1998 .

[45]  Marek Karpinski,et al.  Generalized Wong sequences and their applications to Edmonds' problems , 2013, J. Comput. Syst. Sci..

[46]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[47]  Avi Wigderson,et al.  Non-commutative arithmetic circuits with division , 2014, Theory Comput..

[48]  Paul M. Cohn,et al.  Skew Fields: Theory of General Division Rings , 1995 .

[49]  S. A. Amitsur Rational identities and applications to algebra and geometry , 1966 .

[50]  Ilya Volkovich,et al.  Black-Box Identity Testing of Depth-4 Multilinear Circuits , 2011, Combinatorica.

[51]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[52]  Claudio Procesi,et al.  The invariant theory of n × n matrices , 1976 .

[53]  Avi Wigderson,et al.  Relationless Completeness and Separations , 2010, 2010 IEEE 25th Annual Conference on Computational Complexity.

[54]  Ketan Mulmuley,et al.  Geometric Complexity Theory V: Equivalence between Blackbox Derandomization of Polynomial Identity Testing and Derandomization of Noether's Normalization Lemma , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[55]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[56]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[57]  Harm Derksen,et al.  Polynomial bounds for rings of invariants , 2000 .

[58]  Thomas Thierauf,et al.  Bipartite perfect matching is in quasi-NC , 2016, STOC.

[59]  Vladimir L. Popov,et al.  THE CONSTRUCTIVE THEORY OF INVARIANTS , 1982 .

[60]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[61]  Marek Karpinski,et al.  Deterministic Polynomial Time Algorithms for Matrix Completion Problems , 2009, SIAM J. Comput..

[62]  Zeev Dvir,et al.  Locally Decodable Codes with Two Queries and Polynomial Identity Testing for Depth 3 Circuits , 2007, SIAM J. Comput..

[63]  Harm Derksen,et al.  Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients , 2000 .

[64]  Harm Derksen,et al.  Polynomial degree bounds for matrix semi-invariants , 2015, ArXiv.

[65]  George Szeto,et al.  A Generalization of the Artin-Procesi Theorem , 1977 .

[66]  Ju P Razmyslov TRACE IDENTITIES OF FULL MATRIX ALGEBRAS OVER A FIELD OF CHARACTERISTIC ZERO , 1974 .

[67]  W. Haken Theorie der Normalflächen , 1961 .

[68]  Mátyás Domokos,et al.  Semi-invariants of quivers as determinants , 2001 .

[69]  Dmitry S. Kaliuzhnyi-Verbovetskyi,et al.  Noncommutative rational functions, their difference-differential calculus and realizations , 2010, Multidimens. Syst. Signal Process..

[70]  Zeev Dvir,et al.  Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits , 2005, STOC '05.

[71]  D. Hilbert,et al.  Ueber die vollen Invariantensysteme , 1893 .

[72]  Alex Samorodnitsky,et al.  A Deterministic Algorithm for Approximating the Mixed Discriminant and Mixed Volume, and a Combinatorial Corollary , 2002, Discret. Comput. Geom..

[73]  Mike D. Atkinson,et al.  SPACES OF MATRICES OF BOUNDED RANK , 1978 .

[74]  Louis Rowen,et al.  Polynomial identities in ring theory , 1980 .

[75]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[76]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[77]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[78]  Hoeteck Wee,et al.  More on noncommutative polynomial identity testing , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[79]  P. M. Cohn,et al.  The word problem for free fields: a correction and an addendum , 1975, Journal of Symbolic Logic.

[80]  Neeraj Kayal,et al.  Polynomial Identity Testing for Depth 3 Circuits , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[81]  Michel Van den Bergh,et al.  Semi-invariants of quivers for arbitrary dimension vectors , 1999 .