Towards chip-scale optical frequency synthesis based on optical heterodyne phase-locked loop

An integrated heterodyne optical phase-locked loop was designed and demonstrated with an indium phosphide based photonic integrated circuit and commercial off-the-shelf electronic components. As an input reference, a stable microresonator-based optical frequency comb with a 50-dB span of 25 nm (~3 THz) around 1550 nm, having a spacing of ~26 GHz, was used. A widely-tunable on-chip sampled-grating distributed-Braggreflector laser is offset locked across multiple comb lines. An arbitrary frequency synthesis between the comb lines is demonstrated by tuning the RF offset source, and better than 100Hz tuning resolution with ± 5 Hz accuracy is obtained. Frequency switching of the on-chip laser to a point more than two dozen comb lines away (~5.6 nm) and simultaneous locking to the corresponding nearest comb line is also achieved in a time ~200 ns. A low residual phase noise of the optical phase-locking system is successfully achieved, as experimentally verified by the value of 80 dBc/Hz at an offset of as low as 200 Hz. © 2017 Optical Society of America OCIS codes: (250.5300) Photonic integrated circuits; (060.5625) Radio frequency photonics; (060.2840) Heterodyne; (140.0140) Lasers and laser optics; (140.3600) Lasers, tunable; (140.3945) Microcavities; (230.5750) Resonators References and links 1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000). 2. J. Castillega, D. Livingston, A. Sanders, and D. Shiner, “Precise measurement of the J = 1 to J = 2 fine structure interval in the 2( 3)P state of helium,” Phys. Rev. Lett. 84(19), 4321–4324 (2000). 3. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006). 4. W. C. Swann and N. R. Newbury, “Frequency-resolved coherent lidar using a femtosecond fiber laser,” Opt. Lett. 31(6), 826–828 (2006). 5. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999). 6. A. A. Madej, L. Marmet, and J. E. Bernard, “Rb atomic absorption line reference for single Sr laser cooling systems,” Appl. Phys. B 67(2), 229–234 (1998). 7. H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, “Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique,” Appl. Phys. Lett. 89(18), 181110 (2006). 8. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10) level,” Science 303(5665), 1843–1845 (2004). 9. Y.-J. Kim, J. Jin, Y. Kim, S. Hyun, and S.-W. Kim, “A wide-range optical frequency generator based on the frequency comb of a femtosecond laser,” Opt. Express 16(1), 258–264 (2008). Vol. 25, No. 2 | 23 Jan 2017 | OPTICS EXPRESS 681 #278682 http://dx.doi.org/10.1364/OE.25.000681 Journal © 2017 Received 12 Oct 2016; accepted 23 Dec 2016; published 10 Jan 2017 10. H. Y. Ryu, S. H. Lee, W. K. Lee, H. S. Moon, and H. S. Suh, “Absolute frequency measurement of an acetylene stabilized laser using a selected single mode from a femtosecond fiber laser comb,” Opt. Express 16(5), 2867– 2873 (2008). 11. http://www.menlosystems.com/assets/documents-2/FC1500-ProductBrochure.pdf 12. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). 13. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). 14. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). 15. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Mode locking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 1335–1343 (2013). 16. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7–8), 393–397 (1989). 17. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15(11), 6768–6773 (2007). 18. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015). 19. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator,” Opt. Eng. 53(12), 122607 (2014). 20. I. M. White, J. D. Suter, H. Oveys, X. Fan, T. L. Smith, J. Zhang, B. J. Koch, and M. A. Haase, “Universal coupling between metal-clad waveguides and optical ring resonators,” Opt. Express 15(2), 646–651 (2007). 21. X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21(20), 23592–23603 (2013). 22. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004). 23. T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113(12), 123901 (2014). 24. M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39(2), 283–286 (2014). 25. W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015). 26. A. B. Matsko and L. Maleki, “On timing jitter of mode-locked Kerr frequency combs,” Opt. Express 21(23), 28862–28876 (2013). 27. A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki, “Stabilization of a Kerr frequency comb oscillator,” Opt. Lett. 38(15), 2636–2639 (2013). 28. A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance homodyne optical injection phase-lock loop using wide-linewidth semiconductor lasers,” IEEE Photonics Technol. Lett. 8(9), 1217–1219 (1996). 29. K. Balakier, M. J. Fice, L. Ponnampalam, A. J. Seeds, and C. C. Renaud, “Monolithically integrated optical phase-lock loop for microwave photonics,” J. Lightwave Technol. 32(20), 3893–3900 (2014). 30. C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photonics Technol. Lett. 16(3), 903–905 (2004). 31. C. C. Renaud, C. F. C. Silva, M. Dueser, P. Bayvel, and A. J. Seeds, “Exact, agile, optical frequency synthesis using an optical comb generator and optical injection phase-lock loop,” in Digest of the LEOS Summer Topical Meetings (2003), paper WC1.3/67. 32. H. Inaba, T. Ikegami, H. Feng-Lei, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, and S. I. Yamaguchi, “Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis,” IEEE J. Quantum Electron. 40(7), 929–936 (2004). 33. T. R. Schibli, K. Minoshima, E. L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett. 30(17), 2323–2325 (2005). 34. J. E. Bowers, A. Beling, A. Bluestone, S. M. Bowers, L. Chang, S. Diddams, G. Fish, T. Kippenberg, T. Komljenovic, E. Norberg, S. Papp, K. Srinivasan, L. Theogarajan, K. Vahala, and N. Volet, “Chip-scale optical resonator enabled synthesizer (CORES): Miniature systems for optical frequency synthesis,” in IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–5. 35. L. Mingzhi, P. Hyun-chul, E. Bloch, A. Sivananthan, J. S. Parker, Z. Griffith, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “An integrated 40 gbit/s optical costas receiver,” J. Lightwave Technol. 31(13), 2244–2253 (2013). 36. S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. 28(4), 526–538 (2010). 37. M. Lu, H.-C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference 2014 (2014). 38. J. Parker, M. Lu, H. Park, E. Bloch, A. Sivananthan, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Offset locking of an SG-DBR to an InGaAsP/InP mode-locked laser,” in IEEE Photonics Conference (IPC) (2012). Vol. 25, No. 2 | 23 Jan 2017 | OPTICS EXPRESS 682

[1]  Mark J. W. Rodwell,et al.  A highly-integrated optical frequency synthesizer based on phase-locked loops , 2014, OFC 2014.

[2]  Alan A. Madej,et al.  Rb atomic absorption line reference for single Sr+ laser cooling systems , 1998 .

[3]  Scott A. Diddams,et al.  Optical Frequency Synthesis and Comparison with Uncertainty at the 10-19 Level , 2004, Science.

[4]  L. Coldren,et al.  An Optical Phase-Locked Loop Photonic Integrated Circuit , 2010, Journal of Lightwave Technology.

[5]  Theodor W. Hänsch,et al.  Absolute Optical Frequency Measurement of the Cesium D 1 Line with a Mode-Locked Laser , 1999 .

[6]  Y. Koga,et al.  Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis , 2004, IEEE Journal of Quantum Electronics.

[7]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[8]  Jun Ye,et al.  References and Notes Supporting Online Material Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection , 2022 .

[9]  A. Matsko,et al.  Stabilization of a Kerr frequency comb oscillator. , 2013, Optics letters.

[10]  Xudong Fan,et al.  Universal coupling between metal-clad waveguides and optical ring resonators. , 2007, Optics express.

[11]  Vladimir S. Ilchenko,et al.  Quality-factor and nonlinear properties of optical Whispering-Gallery modes , 1989 .

[12]  Cyril C. Renaud,et al.  Monolithically Integrated Optical Phase Lock Loop for Microwave Photonics , 2014, Journal of Lightwave Technology.

[13]  T. C. Briles,et al.  Chip-scale optical resonator enabled synthesizer (CORES) miniature systems for optical frequency synthesis , 2016, 2016 IEEE International Frequency Control Symposium (IFCS).

[14]  Lute Maleki,et al.  Optical resonators with ten million finesse. , 2007, Optics express.

[15]  N. Newbury,et al.  Frequency-resolved coherent LIDAR using a femtosecond fiber laser , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[16]  Han Seb Moon,et al.  Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique , 2006 .

[17]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[18]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[19]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[20]  H Matsumoto,et al.  Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb. , 2005, Optics letters.

[21]  Hyun-chul Park,et al.  An Integrated 40 Gbit/s Optical Costas Receiver , 2013, Journal of Lightwave Technology.

[22]  Han Seb Moon,et al.  Absolute frequency measurement of an acetylene stabilized laser using a selected single mode from a femtosecond fiber laser comb. , 2008, Optics express.

[23]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[24]  A. Matsko,et al.  Ultralow noise miniature external cavity semiconductor laser , 2015, Nature Communications.

[25]  Michal Lipson,et al.  Modelocking and femtosecond pulse generation in chip-based frequency combs. , 2012, Optics express.

[26]  P. Bayvel,et al.  Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL) , 2004, IEEE Photonics Technology Letters.

[27]  Miro Erkintalo,et al.  Coherence properties of Kerr frequency combs. , 2013, Optics letters.

[28]  Vladimir S. Ilchenko,et al.  Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator , 2014 .

[29]  Livingston,et al.  Precise measurement of the J = 1 to J = 2 fine structure interval in the 2( 3)P state of helium , 2000, Physical review letters.

[30]  M. Gorodetsky,et al.  Mode spectrum and temporal soliton formation in optical microresonators. , 2013, Physical review letters.

[31]  Lute Maleki,et al.  On timing jitter of mode locked Kerr frequency combs. , 2013, Optics express.

[32]  A.J. Seeds,et al.  High-performance homodyne optical injection phase-lock loop using wide-linewidth semiconductor lasers , 1996, IEEE Photonics Technology Letters.