Extrapolation techniques for ill-conditioned linear systems

Summary. In this paper, the regularized solutions of an ill–conditioned system of linear equations are computed for several values of the regularization parameter $\lambda$. Then, these solutions are extrapolated at $\lambda=0$ by various vector rational extrapolations techniques built for that purpose. These techniques are justified by an analysis of the regularized solutions based on the singular value decomposition and the generalized singular value decomposition. Numerical results illustrate the effectiveness of the procedures.

[1]  James Demmel,et al.  Computing the Generalized Singular Value Decomposition , 1993, SIAM J. Sci. Comput..

[2]  J. Riley Solving systems of linear equations with a positive definite, symmetric, but possibly ill-conditioned matrix , 1955 .

[3]  J. Stoer,et al.  Fehlerabschätzungen und Extrapolation mit rationalen Funktionen bei Verfahren vom Richardson-Typus , 1964 .

[4]  M. Saunders,et al.  Towards a Generalized Singular Value Decomposition , 1981 .

[5]  A. Tikhonov,et al.  Numerical Methods for the Solution of Ill-Posed Problems , 1995 .

[6]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[7]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[8]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[9]  P. Wynn,et al.  On a Procrustean technique for the numerical transformation of slowly convergent sequences and series , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  G. Marchuk,et al.  Difference Methods and Their Extrapolations , 1983 .

[11]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[12]  C. Vogel Non-convergence of the L-curve regularization parameter selection method , 1996 .

[13]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[14]  G. Claessens,et al.  A useful identity for the rational Hermite interpolation table , 1978 .

[15]  Claude Brezinski,et al.  A general extrapolation algorithm , 1980 .

[16]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[17]  F. M. Larkin Some Techniques for Rational Interpolation , 1967, Comput. J..

[18]  C. Loan Computing the CS and the generalized singular value decompositions , 1985 .

[19]  C. Brezinski,et al.  Extrapolation methods , 1992 .

[20]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[21]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[22]  HansenPer Christian The truncated SVD as a method for regularization , 1987 .

[23]  J. M Varah,et al.  Computational methods in linear algebra , 1984 .

[24]  Claude Brezinski,et al.  Extrapolation methods - theory and practice , 1993, Studies in computational mathematics.

[25]  C. Brezinski,et al.  A breakdown-free Lanczos type algorithm for solving linear systems , 1992 .

[26]  Annie Cuyt,et al.  Nonlinear Methods in Numerical Analysis , 1987 .