Algorithms for local optimization of OPLS energy for large protein structures

Many problems arise in computational biology can be reduced to the minimization of energy function, that determines on the geometry of considered molecule. The solution of this problem allows in particular to solve folding and docking problems in structural biology. For the small molecules this problem is well solved. But for the large molecules ($10^4$ atoms and more) this is still an open problem. In this work we consider energy minimization problem (OPLS force field) for the large molecules but with good enough initial (starting) point. In the paper one can find a biological explanation of this assumption. Due to this assumption we reduce the global optimization problem to the local one. We compare different methods: gradient-free methods, gradient type methods (gradient method, fast gradient method, conjugate gradients (CG), LBFGS), high-order (tensor) methods. We observe that the most convenient ones in GPU realization are fast gradient descent with special line-search and CG (Polak--Ribiere--Polyak), LBFGS (memory = 3 iteration). Finally, we demonstrate how all these method work on real data set provided by BIOCAD.

[1]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[2]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[3]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[4]  Eduard A. Gorbunov,et al.  An Accelerated Method for Derivative-Free Smooth Stochastic Convex Optimization , 2018, SIAM J. Optim..

[5]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[6]  Nicholas Wilt,et al.  The CUDA Handbook: A Comprehensive Guide to GPU Programming , 2013 .

[7]  Yurii Nesterov,et al.  Implementable tensor methods in unconstrained convex optimization , 2019, Mathematical Programming.

[8]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[9]  Emmanuel J. Candès,et al.  Adaptive Restart for Accelerated Gradient Schemes , 2012, Foundations of Computational Mathematics.

[10]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[11]  М. А. Посыпкин Методы и распределенная программная инфраструктура для численного решения задачи поиска молекулярных кластеров с минимальной энергией , 2010 .

[12]  Chaok Seok,et al.  A kinematic view of loop closure , 2004, J. Comput. Chem..

[13]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[14]  Renato D. C. Monteiro,et al.  An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and Its Implications to Second-Order Methods , 2013, SIAM J. Optim..

[15]  Adrian A Canutescu,et al.  Cyclic coordinate descent: A robotics algorithm for protein loop closure , 2003, Protein science : a publication of the Protein Society.

[16]  Ohad Shamir,et al.  Oracle complexity of second-order methods for smooth convex optimization , 2017, Mathematical Programming.

[17]  Arkadiĭ Semenovich Nemirovskiĭ,et al.  Сложность задач и эффективность методов оптимизации , 1979 .

[18]  Yin Tat Lee,et al.  A Faster Cutting Plane Method and its Implications for Combinatorial and Convex Optimization , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[19]  M. Baes Estimate sequence methods: extensions and approximations , 2009 .

[20]  Saeed Ghadimi,et al.  Generalized Uniformly Optimal Methods for Nonlinear Programming , 2015, Journal of Scientific Computing.

[21]  Joël Janin,et al.  Welcome to CAPRI: A Critical Assessment of PRedicted Interactions , 2002 .

[22]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[23]  William H. Press,et al.  Numerical recipes , 1990 .

[24]  Benjamin Recht,et al.  Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints , 2014, SIAM J. Optim..

[25]  Stephen J. Wright,et al.  Sequential Quadratic Programming , 1999 .

[26]  Adrien B. Taylor,et al.  Efficient first-order methods for convex minimization: a constructive approach , 2018, Mathematical Programming.

[27]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[28]  C. Levinthal How to fold graciously , 1969 .

[29]  Peter Richtárik,et al.  Linearly convergent stochastic heavy ball method for minimizing generalization error , 2017, ArXiv.

[30]  M. Zibulevsky,et al.  Sequential Subspace Optimization Method for Large-Scale Unconstrained Problems , 2005 .

[31]  Euhanna Ghadimi,et al.  Global convergence of the Heavy-ball method for convex optimization , 2014, 2015 European Control Conference (ECC).

[32]  Yurii Nesterov,et al.  Random Gradient-Free Minimization of Convex Functions , 2015, Foundations of Computational Mathematics.

[33]  Alexander Gasnikov,et al.  Gradient-free two-points optimal method for non smooth stochastic convex optimization problem with additional small noise , 2017 .

[34]  Saeed Ghadimi,et al.  Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming , 2013, SIAM J. Optim..

[35]  Stephen P. Boyd,et al.  A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights , 2014, J. Mach. Learn. Res..

[36]  Yair Carmon,et al.  Lower bounds for finding stationary points II: first-order methods , 2017, Mathematical Programming.

[37]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[38]  J. Fraaije,et al.  Accuracy Test of the OPLS-AA Force Field for Calculating Free Energies of Mixing and Comparison with PAC-MAC , 2017, Journal of chemical theory and computation.