Mixed Finite Elements, Strong Symmetry and Mass Lumping for Elastic Waves
暂无分享,去创建一个
[1] B. Auld,et al. Accoustic Fields And Waves In Solids Vol-2 , 1973 .
[2] Claes Johnson,et al. Some equilibrium finite element methods for two-dimensional elasticity problems , 1978 .
[3] Eliane Bécache,et al. Étude d'un nouvel élément fini mixte permettant la condensation de masse , 1997 .
[4] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[5] F. Collino. Perfectly Matched Absorbing Layers for the Paraxial Equations , 1997 .
[6] J. Bérenger. Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .
[7] R. Glowinski,et al. A fictitious domain method for Dirichlet problem and applications , 1994 .
[8] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[9] An Optimal Absorbing Boundary Condition For Elastic Wave Modeling , 1993 .
[10] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[11] T. Dupont. $L^2 $-Estimates for Galerkin Methods for Second Order Hyperbolic Equations , 1973 .
[12] Vassilios A. Dougalis,et al. The Effect of Quadrature Errors on Finite Element Approximations for Second Order Hyperbolic Equations , 1976 .
[13] R. Stenberg. A family of mixed finite elements for the elasticity problem , 1988 .
[14] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[15] R. Glowinski,et al. Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .
[16] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[17] Nathalie Tordjman,et al. Éléments finis d'ordre élevé avec condensation de masse pour l'équation des ondes , 1994 .
[18] C. Tsogka,et al. Some New Mixed Finite Elements in View of the Numerical Solution of Time Dependent Wave Propagation Problems , 1998 .
[19] Chrysoula Tsogka,et al. Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic hete , 1998 .
[20] M. E. Morley. A family of mixed finite elements for linear elasticity , 1989 .
[21] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[22] Rolf Stenberg,et al. A technique for analysing finite element methods for viscous incompressible flow , 1990 .
[23] F. Collino,et al. Fictitious Domain Method for Unsteady Problems: Application to Electromagnetic Scattering , 1996 .
[24] J. Douglas,et al. PEERS: A new mixed finite element for plane elasticity , 1984 .