Spectral mesh-free quadrature for planar regions bounded by rational parametric curves

This work presents spectral, mesh-free, Green's theorem-based numerical quadrature schemes for integrating functions over planar regions bounded by rational parametric curves. Our algorithm proceeds in two steps: (1) We first find intermediate quadrature rules for line integrals along the region's boundary curves corresponding to Green's theorem. (2) We then use a high-order quadrature rule to compute the numerical antiderivative of the integrand along a coordinate axis, which is used to evaluate the Green's theorem line integral. We present two methods to compute the intermediate quadrature rule. The first is spectrally accurate (it converges faster than any algebraic order with respect to number of quadrature points) and is relatively easy to implement, but has no guarantee of polynomial exactness. The second guarantees exactness for polynomial integrands up to a pre-specified degree k with an a priori-known number of quadrature points and retains the convergence properties of the first, but is slightly more complicated. The quadrature schemes have applications to computation of geometric moments, immersogeometric analysis, conservative field transfer between high-order meshes, and initialization of simulations with rational geometry. We compare the quadrature schemes produced using our method to other methods in the literature and show that they are much more efficient both in terms of number of quadrature points and computational time.

[1]  Vladimir S. Chelyshkov,et al.  Alternative orthogonal polynomials and quadratures. , 2006 .

[2]  John A. Evans,et al.  Isogeometric unstructured tetrahedral and mixed-element Bernstein–Bézier discretizations , 2017 .

[3]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[4]  Adarsh Krishnamurthy,et al.  Accurate moment computation using the GPU , 2010, SPM '10.

[5]  W. Gautschi Orthogonal Polynomials and Quadrature * , 1999 .

[6]  John A. Evans,et al.  Mesh quality metrics for isogeometric Bernstein–Bézier discretizations , 2018, Computer Methods in Applied Mechanics and Engineering.

[7]  Adhemar Bultheel,et al.  Rational Gauss-Chebyshev quadrature formulas for complex poles outside [-1, 1] , 2007, Math. Comput..

[8]  M. Larson,et al.  Cut finite element methods for elliptic problems on multipatch parametric surfaces , 2017, 1703.07077.

[9]  M. Shashkov,et al.  Moment-of-fluid interface reconstruction , 2005 .

[10]  John A. Evans,et al.  Isogeometric triangular Bernstein–Bézier discretizations: Automatic mesh generation and geometrically exact finite element analysis , 2016 .

[11]  John A. Evans,et al.  A rapid and efficient isogeometric design space exploration framework with application to structural mechanics , 2017 .

[12]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[13]  Karl Deckers,et al.  Algorithm 973 , 2017, ACM Trans. Math. Softw..

[14]  A. Edelman,et al.  Polynomial roots from companion matrix eigenvalues , 1995 .

[15]  Mark H. Singer A general approach to moment calculation for polygons and line segments , 1993, Pattern Recognit..

[16]  Alvise Sommariva,et al.  Meshless cubature by Green's formula , 2006, Appl. Math. Comput..

[17]  Fritz Albregtsen,et al.  Fast and exact computation of Cartesian geometric moments using discrete Green's theorem , 1996, Pattern Recognit..

[18]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[19]  J. Verschaeve High order interface reconstruction for the volume of fluid method , 2011 .

[20]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[21]  Alvise Sommariva,et al.  Gauss-Green cubature and moment computation over arbitrary geometries , 2009, J. Comput. Appl. Math..

[22]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[23]  Maxim Olshanskii,et al.  Numerical integration over implicitly defined domains for higher order unfitted finite element methods , 2016, 1601.06182.

[24]  Vadim Shapiro,et al.  A moment-vector approach to interoperable analysis , 2018, Comput. Aided Des..

[25]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[26]  Adhemar Bultheel,et al.  Computing rational Gauss-Chebyshev quadrature formulas with complex poles: The algorithm , 2009, Adv. Eng. Softw..

[27]  Walter Gautschi Gauss-type Quadrature Rules for Rational Functions , 1993 .

[28]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[29]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[30]  Xevi Roca,et al.  Defining Quality Measures for High-Order Planar Triangles and Curved Mesh Generation , 2011, IMR.

[31]  Vadim Shapiro,et al.  Shape Aware Quadratures , 2018, J. Comput. Phys..

[32]  P. Persson,et al.  High-order Solution Transfer between Curved Triangular Meshes , 2018, 1810.06806.

[33]  Rida T. Farouki,et al.  Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..

[34]  Robert Michael Kirby,et al.  Numerical Integration in Multiple Dimensions with Designed Quadrature , 2018, SIAM J. Sci. Comput..

[35]  Wolfgang A. Wall,et al.  Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods , 2013 .

[36]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[37]  R. I. Saye,et al.  High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles , 2015, SIAM J. Sci. Comput..

[38]  Cornelis Vuik,et al.  Spline-Based Parameterization Techniques for Twin-Screw Machine Geometries , 2018 .

[39]  G. Sangalli,et al.  IsoGeometric Analysis using T-splines , 2012 .

[40]  Alvise Sommariva,et al.  An algebraic cubature formula on curvilinear polygons , 2011, Appl. Math. Comput..

[41]  Vadim Shapiro,et al.  Adaptively weighted numerical integration over arbitrary domains , 2014, Comput. Math. Appl..

[42]  Ernst Rank,et al.  Efficient and accurate numerical quadrature for immersed boundary methods , 2015, Advanced Modeling and Simulation in Engineering Sciences.

[43]  Shi-Jinn Horng,et al.  A new computation of shape moments via quadtree decomposition , 2000, Pattern Recognit..

[44]  Darren Engwirda,et al.  Locally optimal Delaunay-refinement and optimisation-based mesh generation , 2014 .

[45]  Jean B. Lasserre,et al.  Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra , 2015, Computational Mechanics.

[46]  Adhemar Bultheel,et al.  Algorithm 882: Near-Best Fixed Pole Rational Interpolation with Applications in Spectral Methods , 2008, TOMS.

[47]  Jan Flusser,et al.  On the Calculation of Image Moments , 1999 .

[48]  M. M. Djrbashian A Survey on the Theory of Orthogonal System and Some Open Problems , 1990 .

[49]  Rida T. Farouki,et al.  The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..

[50]  Tzanio V. Kolev,et al.  High-Order Multi-Material ALE Hydrodynamics , 2018, SIAM J. Sci. Comput..

[51]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[52]  Bert Jüttler,et al.  First Order Error Correction for Trimmed Quadrature in Isogeometric Analysis , 2017, Lecture Notes in Computational Science and Engineering.

[53]  Bingcheng Li The moment calculation of polyhedra , 1993, Pattern Recognit..

[54]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[55]  S. Sherwin,et al.  Mesh generation in curvilinear domains using high‐order elements , 2002 .

[56]  Alexander V. Tuzikov,et al.  Moment Computation for Objects with Spline Curve Boundary , 2003, IEEE Trans. Pattern Anal. Mach. Intell..