Petrogenesis and metallogenic implications of the Miocene granite porphyry in the Jiama Cu-polymetallic deposit, Gangdese belt, South Tibet

[1]  E. al.,et al.  Supplemental Material: The impact of a tear in the subducted Indian plate on the Miocene geology of the Himalayan-Tibetan orogen , 2021, GSA Bulletin.

[2]  Wei-dong Sun,et al.  Early cretaceous transformation from Pacific to Neo-Tethys subduction in the SW Pacific Ocean: Constraints from Pb-Sr-Nd-Hf isotopes of the Philippine arc , 2020 .

[3]  Weikai Li,et al.  Supplemental Material: Redox state of southern Tibetan upper mantle and ultrapotassic magmas , 2020, Geology.

[4]  Yulin Deng,et al.  Geochronology and geochemistry of volcanic rocks of the Bima Formation, southern Lhasa subterrane, Tibet: Implications for early Neo-Tethyan subduction , 2020, Gondwana Research.

[5]  W. Kun,et al.  Plate subduction and porphyry Cu-Au mineralization , 2020 .

[6]  Qiang Wang,et al.  Arc Andesitic Rocks Derived From Partial Melts of Mélange Diapir in Subduction Zones: Evidence From Whole‐Rock Geochemistry and Sr‐Nd‐Mo Isotopes of the Paleogene Linzizong Volcanic Succession in Southern Tibet , 2019, Journal of Geophysical Research: Solid Earth.

[7]  Chen Guoliang,et al.  The origin of the mafic microgranular enclaves from Jiama porphyry Cu polymetallic deposit, Tibet: Implications for magma mixing/mingling and mineralization , 2019, Acta Petrologica Sinica.

[8]  W. Griffin,et al.  Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting , 2018, Geology.

[9]  L. Ding,et al.  Sequence and petrogenesis of the Jurassic volcanic rocks (Yeba Formation) in the Gangdese arc, southern Tibet: Implications for the Neo-Tethyan subduction , 2018, Lithos.

[10]  W. Collins,et al.  Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet , 2018, Earth-Science Reviews.

[11]  Yongjun Lu,et al.  Miocene Ultrapotassic, High‐Mg Dioritic, and Adakite‐like Rocks from Zhunuo in Southern Tibet: Implications for Mantle Metasomatism and Porphyry Copper Mineralization in Collisional Orogens , 2018 .

[12]  W. Fan,et al.  Major Miocene geological events in southern Tibet and eastern Asia induced by the subduction of the Ninetyeast Ridge , 2018, Acta Geochimica.

[13]  Yan Liu,et al.  Constraints on the origin of adakites and porphyry Cu-Mo mineralization in Chongjiang, Southern Gangdese, the Tibetan Plateau , 2017 .

[14]  Xue Gao,et al.  Constraints of magmatic oxidation state on mineralization in the Beiya alkali-rich porphyry gold deposit, western Yunnan, China , 2017 .

[15]  Wei-dong Sun,et al.  Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China , 2017 .

[16]  Fu-guan Wu,et al.  Highly fractionated granites: Recognition and research , 2017, Science China Earth Sciences.

[17]  Rongqing Zhang,et al.  Adakitic rocks associated with the Shilu copper–molybdenum deposit in the Yangchun Basin, South China, and their tectonic implications , 2017, Acta Geochimica.

[18]  Wei-dong Sun,et al.  The formation of porphyry copper deposits , 2017, Acta Geochimica.

[19]  L. Ding,et al.  Petrogenesis of Middle–Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere , 2016 .

[20]  Yong‐Fei Zheng,et al.  Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry , 2016 .

[21]  Li Ying,et al.  Geology of the Jiama porphyry copper–polymetallic system, Lhasa Region, China , 2016 .

[22]  S. Goldstein,et al.  High Precision Sr‐Nd‐Hf‐Pb Isotopic Compositions of USGS Reference Material BCR‐2 , 2016 .

[23]  Fu-Yuan Wu,et al.  Geochemistry and geochronology of mafic rocks from the Luobusa ophiolite, South Tibet , 2016 .

[24]  Yongjun Lu,et al.  Zircon Compositions as a Pathfinder for Porphyry Cu ± Mo ± Au Deposits , 2016 .

[25]  D. DePaolo,et al.  Identifying mantle carbonatite metasomatism through Os–Sr–Mg isotopes in Tibetan ultrapotassic rocks. , 2015 .

[26]  J. Richards,et al.  The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu–Mo deposits in the Gangdese belt, southern Tibet , 2015 .

[27]  Peter A. Cawood,et al.  Magmatic record of India-Asia collision , 2015, Scientific Reports.

[28]  Yongbin Hu,et al.  The formation of Qulong adakites and their relationship with porphyry copper deposit: Geochemical constraints , 2015 .

[29]  Wei-dong Sun,et al.  Porphyry deposits and oxidized magmas , 2015 .

[30]  Yongjun Lu,et al.  A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones , 2015 .

[31]  Y. Dilek,et al.  Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang ophiolites of the Yarlung-Zangbo Suture zone: Plume-influenced continental margin-type oceanic lithosphere in southern Tibet , 2015 .

[32]  Yongjun Lu,et al.  High-Mg diorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens , 2015 .

[33]  J. Richards,et al.  Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo +/- Au Mineralization , 2014 .

[34]  T. Harrison,et al.  Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence , 2014 .

[35]  S. Wilde,et al.  Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc , 2014 .

[36]  Z. Hou,et al.  Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth , 2014 .

[37]  Li Ying,et al.  Re–Os systematics of sulfides (chalcopyrite, bornite, pyrite and pyrrhotite) from the Jiama Cu–Mo deposit of Tibet, China , 2014 .

[38]  T. Harrison,et al.  Zircon xenocrysts in Tibetan ultrapotassic magmas: Imaging the deep crust through time , 2014 .

[39]  Yue-heng Yang,et al.  Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes , 2013 .

[40]  J. Wilkinson Triggers for the formation of porphyry ore deposits in magmatic arcs , 2013 .

[41]  Hong-lin Yuan,et al.  Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent–continent collision zone , 2013 .

[42]  Z. Hou,et al.  The origin and pre-Cenozoic evolution of the Tibetan Plateau , 2013 .

[43]  N. Arndt,et al.  High Oxygen Fugacity and Slab Melting Linked to Cu Mineralization: Evidence from Dexing Porphyry Copper Deposits, Southeastern China , 2013, The Journal of Geology.

[44]  Yigang Xu,et al.  Destruction of the North China Craton Induced by Ridge Subductions , 2013, The Journal of Geology.

[45]  W. Fan,et al.  The link between reduced porphyry copper deposits and oxidized magmas , 2013 .

[46]  Zhidan Zhao,et al.  Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet , 2013, Mineralium Deposita.

[47]  B. Chappell,et al.  Peraluminous I-type granites , 2012 .

[48]  E. Watson,et al.  Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas , 2012 .

[49]  G. Stevens,et al.  What controls chemical variation in granitic magmas , 2012 .

[50]  Q. Yin,et al.  Geochemical Constraints on Adakites of Different Origins and Copper Mineralization , 2012, The Journal of Geology.

[51]  Zhou Yun A Study of Fluid Inclusions and Their Constraints on the Genesis of the Jiama(Gyama) Copper Polymetallic Deposit in Tibet , 2012 .

[52]  Mlr Key Geochemical Characteristics and Significance of the Jiama Adakitic Porphyry,Tibet , 2012 .

[53]  J. Richards HIGH Sr/Y ARC MAGMAS AND PORPHYRY Cu ± Mo ± Au DEPOSITS: JUST ADD WATER , 2011 .

[54]  K. Qin,et al.  Post-collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet: Melting of thickened juvenile arc lower crust , 2011 .

[55]  T. Ju Geochemical characteristics and their implications of peraluminous granite in the Jiama deposit,Tibet , 2011 .

[56]  Mlr Key,et al.  Zircon SHRIMP U-Pb dating of porphyry vein from the Jiama copper polymetallic deposit in Tibet and its significance , 2011 .

[57]  F. Huang,et al.  Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu–Au mineralization , 2010 .

[58]  M. Santosh,et al.  Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet , 2010 .

[59]  Calvin F. Miller,et al.  Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada , 2010 .

[60]  Tang Ju-xing Geological Features and Metallogenic Model of the Jiama Copper-Polymetallic Deposit in Tibet , 2010 .

[61]  W. Fan,et al.  Ridge subduction and porphyry copper-gold mineralization: An overview , 2010 .

[62]  P. Robinson,et al.  Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet , 2009 .

[63]  Wei-Qiang Ji,et al.  Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet , 2009 .

[64]  P. Jugo Sulfur content at sulfide saturation in oxidized magmas , 2009 .

[65]  Dunyi Liu,et al.  Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications , 2008 .

[66]  G. Pan,et al.  SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet , 2008 .

[67]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[68]  S. Chand,et al.  Geophysical characteristics of the Ninetyeast Ridge–Andaman island arc/trench convergent zone , 2008 .

[69]  Xian‐Hua Li,et al.  On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China , 2007 .

[70]  M. Wilson,et al.  Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust , 2007 .

[71]  Xiaoming Qu,et al.  Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet , 2007 .

[72]  E. Watson,et al.  New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers , 2007 .

[73]  B. Kamber,et al.  Lamproitic Rocks from a Continental Collision Zone: Evidence for Recycling of Subducted Tethyan Oceanic Sediments in the Mantle Beneath Southern Tibet , 2007 .

[74]  B. Kamber,et al.  Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism , 2007 .

[75]  Yue-heng Yang,et al.  Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology , 2006 .

[76]  Cong-Qiang Liu,et al.  Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet , 2006 .

[77]  Pan Gui Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. , 2006 .

[78]  Mo Xuan-xue From the Tethys to the formation of the Qinghai-Tibet Plateau:constrained by tectono-magmatic events , 2006 .

[79]  Mo Jihai COMPARISON OF ELA-ICP-MS AND SHRIMP U-PB ZIRCON AGES OF THE CHONGJIANG AND QULONG ORE-BEARING PORPHYRIES IN THE GANGDESE PORPHYRY COPPER BELT , 2006 .

[80]  J. Walshe,et al.  Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls , 2005 .

[81]  A. Crawford,et al.  Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics , 2005 .

[82]  L. Guangming THE PORPHYRY-SKARN ORE-FORMING SYSTEM IN GANGDESE METALLOGENIC BELT, SOUTHERN XIZANG: EVIDENCE FROM MOLYBDENITE RE-OS AGE OF PORPHYRY-TYPE COPPER DEPOSITS AND SKARN-TYPE COPPER POLYMETALLIC DEPOSITS , 2005 .

[83]  Q. Zhang,et al.  Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism , 2005 .

[84]  Xiaoming Qu,et al.  Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau , 2004 .

[85]  Xiaoming Qu,et al.  Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet , 2004 .

[86]  L. Guangming DIAGENETIC AND MINERALIZATION AGES FOR THE PORPHYRY COPPER DEPOSITS IN THE GANGDISE METALLOGENIC BELT, SOUTHERN XIZANG , 2004 .

[87]  H. Zeng Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen. , 2004 .

[88]  Liang Hua-yin Petrochemistry and SHRIMP U-Pb zircon age of the Chongjiang ore-bearing porphyry in the Gangdese porphyry copper belt , 2004 .

[89]  J. Richards Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation , 2003 .

[90]  Q. Zhang,et al.  Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet , 2003 .

[91]  L. Ding,et al.  Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction , 2003 .

[92]  Zhao Rongsheng,et al.  Post‐collisional Adakitic Porphyries in Tibet: Geochemical and Sr‐Nd‐Pb Isotopic Constraints on Partial Melting of Oceanic Lithosphere and Crust‐Mantle Interaction , 2003 .

[93]  H. Zeng Adakite, A Possible Host Rock for Porphyry Copper Deposits: Case Studies of Porphyry Copper Belts in Tibetan Plateau and in Northern Chile , 2003 .

[94]  Wan Liang-liang RESPONSE OF VOLCANISM TO THE INDIA-ASIA COLLISION , 2003 .

[95]  C. German,et al.  Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections , 2002 .

[96]  I. Campbell,et al.  Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile , 2002 .

[97]  J. Mungall Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits , 2002 .

[98]  W. Gang Precise measurement of Sr isotopic composition of liquid and solid base using (LP)MC ICPMS , 2002 .

[99]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[100]  R. Schuster,et al.  Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis , 1999 .

[101]  J. Mahoney,et al.  Tracing the Indian Ocean Mantle Domain Through Time: Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor , 1998 .

[102]  D. Cherniak,et al.  OXYGEN DIFFUSION IN ZIRCON , 1997 .

[103]  F. Bea,et al.  Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study) , 1994 .

[104]  M. Drummond,et al.  Derivation of some modern arc magmas by melting of young subducted lithosphere , 1990, Nature.

[105]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[106]  C. Hawkesworth,et al.  Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[107]  E. Zen Aluminum Enrichment in Silicate Melts by Fractional Crystallization: Some Mineralogic and Petrographic Constraints , 1986 .

[108]  R. Sillitoe A Plate Tectonic Model for the Origin of Porphyry Copper Deposits , 1972 .