Network Throughput Optimization via Error Correcting Codes

A new network construction method is presented for building of scalable, high throughput, low latency networks. The method is based on the exact equivalence discovered between the problem of maximizing network throughput (measured as bisection bandwidth) for a large class of practically interesting Cayley graphs and the problem of maximizing codeword distance for linear error correcting codes. Since the latter problem belongs to a more mature research field with large collections of optimal solutions available, a simple translation recipe is provided for converting the existent optimal error correcting codes into optimal throughput networks. The resulting networks, called here Long Hop networks, require 1.5-5 times fewer switches, 2-6 times fewer internal cables and 1.2-2 times fewer `average hops' than the best presently known networks for the same number of ports provided and the same total throughput. These advantage ratios increase with the network size and switch radix. Independently interesting byproduct of the discovered equivalence is an efficient O(n*log(n)) algorithm based on Walsh-Hadamard transform for computing exact bisections of this class of Cayley graphs (this is NP complete problem for general graphs).