Three-Dimensional Feature Models for Synthetic Aperture Radar and Experiments in Feature Extraction

This dissertation presents a new set of three-dimensional scattering feature models for synthetic aperture radar (SAR). We develop a set of parametric models of canonical shapes that capture aspect-dependent, high-frequency scattering for bistatic (and monostatic) 3D SAR phase history responses. The models are parameterized by the shape location, orientation, and size as well as the radar transmitter and receiver antenna aspects and frequency. We develop the models by combining physical optics (PO) and uniform theory of diffraction (UTD) planar scattering solutions to approximate 3D scattering responses of canonical shapes. We validate the models using scattering prediction software and show that the proposed models capture well the mainlobe responses of each shape. Thus, the proposed models may be used to accurately predict first-order scattering of scenes comprised of such shapes. The second part of this dissertation focuses on the inverse problem of discerning the types of canonical shapes in a scene and estimating their corresponding model parameters from observed SAR phase history data. We present discrimination methods for classifying observed scattering into the geometric shape types. We compute the Cramér-Rao bounds for the models and characterize model parameter estimation accuracy for two estimation schemes. Finally, we present a feature extraction algorithm that classifies and estimates the canonical features from polarimetric phase history data. We use non-quadratic regularization to form sparsity-constrained 3D ii SAR images that are used to initialize the scatterer location, orientation, and size estimates. We test the feature extraction algorithm on simulated phase histories for densely-sampled and sparsely-sampled, monostatic and bistatic 3D SAR apertures. We show that even for sparsely-sampled apertures, the feature extraction algorithm is able to estimate geometric scattering features in the scene. Feature extraction for the proposed canonical shape models may be extended in future work for use in automatic target recognition.

[1]  Jeff Hughes,et al.  Xpatch 4: the next generation in high frequency electromagnetic modeling and simulation software , 2000, Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037].

[2]  A. Michaeli,et al.  A closed form physical theory of diffraction solution for electromagnetic scattering by strips and 90° dihedrals , 1984 .

[3]  R. Hummel,et al.  Model-based ATR using synthetic aperture radar , 2000, Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037].

[4]  D. Blejer Physical optics polarization scattering matrix for a top hat reflector , 1991 .

[5]  Shyh-Kang Jeng,et al.  A compact RCS formula for a dihedral corner reflector at arbitrary aspect angles , 1998 .

[6]  E. Knott,et al.  RCS reduction of dihedral corners , 1977 .

[7]  Brian D. Rigling,et al.  Signal processing strategies for bistatic synthetic aperture radar , 2003 .

[8]  Shane R. Cloude,et al.  Bistatic scattering , 1997, Optics & Photonics.

[9]  Kristine L. Bell,et al.  Barankin Bound for Range and Doppler Estimation Using Orthogonal Signal Transmission , 2007 .

[10]  R.L. Moses,et al.  Wie-Angle Sarse 3D Synthetic Aerture Radar Imaging for Nonlinear Flight Paths , 2008, 2008 IEEE National Aerospace and Electronics Conference.

[11]  M. J. Gerry Two-dimensional inverse scattering based on the GTD model / , 1997 .

[12]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[13]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[14]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[15]  Lee C. Potter,et al.  Attributed scattering centers for SAR ATR , 1997, IEEE Trans. Image Process..

[16]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  William L. Cameron,et al.  Simulated polarimetric signatures of primitive geometrical shapes , 1996, IEEE Trans. Geosci. Remote. Sens..

[18]  Kush R. Varshney,et al.  Joint anisotropy characterization and image formation in wide-angle synthetic aperture radar , 2006 .

[19]  Geometrical and physical optics solutions for the backscatter radar cross section of tophat calibration targets , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[20]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[21]  I. Gupta,et al.  Comparison of monostatic and bistatic radar images , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[22]  Lee C. Potter,et al.  Model-based classification of radar images , 2000, IEEE Trans. Inf. Theory.

[23]  Ronald L. Dilsavor,et al.  Detection of target scattering centers in terrain clutter using an ultra-wideband, fully-polarimetric synthetic aperture radar / , 1993 .

[24]  Stuart R. DeGraaf,et al.  SAR imaging via modern 2D spectral estimation methods , 1994, Defense, Security, and Sensing.

[25]  Emre Ertin,et al.  Polarimetric processing and sequential detection for automatic target recognition systems , 1999 .

[26]  Julie Ann Jackson,et al.  Canonical Scattering Feature Models for 3D and Bistatic SAR , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[27]  W. L. Cameron,et al.  Feature motivated polarization scattering matrix decomposition , 1990, IEEE International Conference on Radar.

[28]  R. Marhefka,et al.  Wideband Electromagnetic Scattering/Analysis Program. Far Zone Electromagnetic Scattering from Complex Shapes Using Geometrical Theory of Diffraction , 1992 .

[29]  Mehrdad Soumekh,et al.  Synthetic Aperture Radar Signal Processing with MATLAB Algorithms , 1999 .

[30]  Dipak L. Sengupta,et al.  Radar Cross Section Analysis and Control , 1991 .

[31]  Peter B. Weichman,et al.  Model-based and data-based approaches for ATR performance prediction , 2003, SPIE Defense + Commercial Sensing.

[32]  Luke Lin,et al.  Data Dome: full k-space sampling data for high-frequency radar research , 2004, SPIE Defense + Commercial Sensing.

[33]  Lawrence Carin,et al.  Matching pursuits with a wave-based dictionary , 1997, IEEE Trans. Signal Process..

[34]  Randolph L. Moses,et al.  Image domain feature extraction from synthetic aperture imagery , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[35]  Müjdat Çetin,et al.  Hyper-parameter selection in non-quadratic regularization-based radar image formation , 2008, SPIE Defense + Commercial Sensing.

[36]  Oliver E. Drummond Integration of features and attributes into target tracking , 2000, SPIE Defense + Commercial Sensing.

[37]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[38]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[39]  Brian D. Rigling,et al.  Motion measurement errors and autofocus in bistatic SAR , 2006, IEEE Transactions on Image Processing.

[40]  R. E. Kell On the derivation of bistatic RCS from monostatic measurements , 1965 .

[41]  J. Huynen Phenomenological theory of radar targets , 1970 .

[42]  Randolph L. Moses,et al.  An algorithm for 3D target scatterer feature estimation from sparse SAR apertures , 2009, Defense + Commercial Sensing.

[43]  B. D. Steinberg,et al.  Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique , 1988 .

[44]  Lixu Gu,et al.  A Novel Implementation of Watershed Transform Using Multi-Degree Immersion Simulation , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[45]  Randolph L. Moses,et al.  Estimation Performance for Canonical Shape Features , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[46]  Stuart R. DeGraaf,et al.  SAR imaging via modern 2-D spectral estimation methods , 1998, IEEE Trans. Image Process..

[47]  Andrew Terzuoli,et al.  Validation of near-field monostatic to bistatic equivalence theorem , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[48]  F.N.S. Medeiros,et al.  Combining watershed and statistical analysis for SAR image segmentation , 2006, 2006 IEEE Conference on Radar.

[49]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[50]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[51]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[52]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[53]  John A. Richards,et al.  Target model generation from multiple synthetic aperture radar images , 2001 .

[54]  Petre Stoica,et al.  3-D target feature extraction via interferometric SAR , 1997 .

[55]  Hao Ling,et al.  3D scattering center representation of complex targets using the shooting and bouncing ray technique: a review , 1998 .

[56]  Edmund G. Zelnio,et al.  Algorithms for Synthetic Aperture Radar Imagery XIV , 1996 .

[57]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[58]  Jian Li,et al.  Efficient mixed-spectrum estimation with applications to target feature extraction , 1995, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers.

[59]  Yeliz Akyildiz,et al.  Feature extraction from synthetic aperture radar imagery , 2000 .

[60]  M. J. Gerry,et al.  A parametric model for synthetic aperture radar measurements , 1999 .

[61]  Brian D. Rigling,et al.  GTD-based scattering models for bistatic SAR , 2004, SPIE Defense + Commercial Sensing.

[62]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[63]  W. Clem Karl,et al.  Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization , 2001, IEEE Trans. Image Process..

[64]  Randolph L. Moses,et al.  IFSAR processing for 3D target reconstruction , 2005, SPIE Defense + Commercial Sensing.

[65]  John F. Shaeffer,et al.  Radar Cross Section , 2004 .

[66]  Randolph L. Moses,et al.  Identifiability of 3D attributed scattering features from sparse nonlinear apertures , 2007, SPIE Defense + Commercial Sensing.

[67]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[68]  J. Keller,et al.  Geometrical theory of diffraction. , 1962, Journal of the Optical Society of America.

[69]  Randolph L. Moses,et al.  Feature extraction algorithm for 3D scene modeling and visualization using monostatic SAR , 2006, SPIE Defense + Commercial Sensing.

[70]  J. D. Silverstein,et al.  Measurements and predictions of the RCS of Bruderhedrals at millimeter wavelengths , 1997 .