A 9.4-bit, 50-MS/s, 1.44-mW Pipelined ADC Using Dynamic Source Follower Residue Amplification

A low-power pipelined ADC featuring dynamic source follower amplifiers is presented in this paper. The proposed dynamic source follower-based architecture provides a low-power alternative to the traditional opamp-based MDAC circuits. This new type of circuit dynamically charges its load capacitance without a large bias current, leading to significant power savings. The presented ADC includes a low-power comparator with offset calibration and uses digital calibration for gain correction. Measured results indicate that the 9.4-bit, 50-MS/s prototype ADC achieves an SNDR of 49.2 dB (7.9 ENOB) and consumes 1.44 mW from a 1.2-V supply, resulting in a figure of merit of 119 fJ/conversion-step. The converter's input capacitance is 90 fF and the total active area is 0.123 mm2 in a 90 nm CMOS process.

[1]  A. Karanicolas,et al.  A 15-b 1-Msample/s digitally self-calibrated pipeline ADC , 1993 .

[2]  Paul R. Gray,et al.  A 10 b, 20 Msample/s, 35 mW pipeline A/D converter , 1995, IEEE J. Solid State Circuits.

[3]  J. Kornblum,et al.  A 14-bit 125 MS/s IF/RF Sampling Pipelined ADC With 100 dB SFDR and 50 fs Jitter , 2006, IEEE Journal of Solid-State Circuits.

[4]  Byung-Moo Min,et al.  A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC , 2003, IEEE J. Solid State Circuits.

[5]  C. Mead,et al.  White noise in MOS transistors and resistors , 1993, IEEE Circuits and Devices Magazine.

[6]  B. Nauta,et al.  Analog circuits in ultra-deep-submicron CMOS , 2005, IEEE Journal of Solid-State Circuits.

[7]  Abbas El Gamal,et al.  Analysis of temporal noise in CMOS photodiode active pixel sensor , 2001, IEEE J. Solid State Circuits.

[8]  Hae-Seung Lee,et al.  A Zero-Crossing-Based 8-bit 200 MS/s Pipelined ADC , 2007, IEEE Journal of Solid-State Circuits.

[9]  C.-K.K. Yang,et al.  Offset compensation in comparators with minimum input-referred supply noise , 2004, IEEE Journal of Solid-State Circuits.

[10]  K. Lee Low-destortion switched-capacitor filter design techniques , 1985 .

[11]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[12]  Yannis Tsividis,et al.  Discrete-time parametric amplification based on a three-terminal MOS varactor: analysis and experimental results , 2003 .

[13]  Daniel W. Dobberpuhl Circuits and technology for Digital's StrongARM and ALPHA microprocessors [CMOS technology] , 1997, Proceedings Seventeenth Conference on Advanced Research in VLSI.

[14]  L. Kushner,et al.  A process-scalable low-power charge-domain 13-bit pipeline ADC , 2008, 2008 IEEE Symposium on VLSI Circuits.

[15]  B. Murmann,et al.  A 12 b 75 MS/s pipelined ADC using open-loop residue amplification , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[16]  Stephen H. Lewis,et al.  Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications , 1992 .

[17]  E. Iroaga,et al.  A 12-Bit 75-MS/s Pipelined ADC Using Incomplete Settling , 2007, IEEE Journal of Solid-State Circuits.

[18]  Boris Murmann,et al.  LIMITS ON ADC POWER DISSIPATION , 2006 .

[19]  B. Murmann,et al.  A 9.4-bit, 50-MS/s, 1.44-mW pipelined ADC using dynamic residue amplification , 2008, 2008 IEEE Symposium on VLSI Circuits.

[20]  P. R. Gray,et al.  A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter , 1999, IEEE J. Solid State Circuits.

[21]  S. H. Lewis,et al.  An 8-bit 80-Msample/s pipelined analog-to-digital converter with background calibration , 2001 .

[22]  M. A. Copeland,et al.  Dynamic amplifier for m.o.s. technology , 1979 .