Signaling by reactive molecules and antioxidants in legume nodules

Summary Legume nodules are symbiotic structures formed as a result of the interaction with rhizobia. Nodules fix atmospheric nitrogen into ammonia that is assimilated by the plant and this process requires strict metabolic regulation and signaling. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved as signal molecules at all stages of symbiosis, from rhizobial infection to nodule senescence. Also, reactive sulfur species (RSS) are emerging as important signals for an efficient symbiosis. Homeostasis of reactive molecules is mainly accomplished by antioxidant enzymes and metabolites and is essential to allow redox signaling while preventing oxidative damage. Here, we examine the metabolic pathways of reactive molecules and antioxidants with an emphasis on their functions in signaling and protection of symbiosis. In addition to providing an update of recent findings while paying tribute to original studies, we identify several key questions. These include the need of new methodologies to detect and quantify ROS, RNS, and RSS, avoiding potential artifacts due to their short lifetimes and tissue manipulation; the regulation of redox‐active proteins by post‐translational modification; the production and exchange of reactive molecules in plastids, peroxisomes, nuclei, and bacteroids; and the unknown but expected crosstalk between ROS, RNS, and RSS in nodules.

[1]  L. Sauviac,et al.  Role of Nitric Oxide (NO) of bacterial origin in the Medicago truncatula-Sinorhizobium meliloti symbiosis. , 2022, Molecular plant-microbe interactions : MPMI.

[2]  Katrin Fischer-Schrader,et al.  Characterization of the amidoxime reducing components ARC1 and ARC2 from Arabidopsis thaliana , 2022, The FEBS journal.

[3]  R. Larkin,et al.  Single cell‐type transcriptome profiling reveals genes that promote nitrogen fixation in the infected and uninfected cells of legume nodules , 2022, Plant biotechnology journal.

[4]  Davoud Farajzadeh,et al.  Redox Regulation in Diazotrophic Bacteria in Interaction with Plants , 2021, Antioxidants.

[5]  P. Gamas,et al.  MtExpress, a Comprehensive and Curated RNAseq-based Gene Expression Atlas for the Model Legume Medicago truncatula , 2021, bioRxiv.

[6]  L. M. Sandalio,et al.  Peroxisomes as redox-signaling nodes in intracellular communication and stress responses , 2021, Plant physiology.

[7]  I Rovira,et al.  Nitric oxide , 2021, Reactions Weekly.

[8]  J. León,et al.  Post-Translational Modifications of Nitrate Reductases Autoregulates Nitric Oxide Biosynthesis in Arabidopsis , 2021, International journal of molecular sciences.

[9]  X. Dai,et al.  LegumeIP V3: from models to crops—an integrative gene discovery platform for translational genomics in legumes , 2020, Nucleic Acids Res..

[10]  M. Gifford,et al.  Determinants of Host Range Specificity in Legume-Rhizobia Symbiosis , 2020, Frontiers in Microbiology.

[11]  S. Bernillon,et al.  Plant Nitrate Reductases Regulate Nitric Oxide Production and Nitrogen-Fixing Metabolism During the Medicago truncatula–Sinorhizobium meliloti Symbiosis , 2020, Frontiers in Plant Science.

[12]  Estíbaliz Larrainzar,et al.  Hemoglobins in the legume-rhizobium symbiosis. , 2020, The New phytologist.

[13]  C. Wong nitrate reductases , 2020, Catalysis from A to Z.

[14]  Juan Chen,et al.  Hydrogen sulfide is a crucial element of the antioxidant defense system in Glycine max–Sinorhizobium fredii symbiotic root nodules , 2020, Plant and Soil.

[15]  Xiuming Lu,et al.  Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571 , 2020, Genes.

[16]  M. Kawaguchi,et al.  Reactive Sulfur Species Interact with Other Signal Molecules in Root Nodule Symbiosis in Lotus japonicus , 2020, Antioxidants.

[17]  A. Berger,et al.  Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration , 2020, The New phytologist.

[18]  G. Sarath,et al.  Plant hemoglobins: a journey from unicellular green algae to vascular plants. , 2020, The New phytologist.

[19]  D. Richardson,et al.  The Hemoglobin Bjgb From Bradyrhizobium diazoefficiens Controls NO Homeostasis in Soybean Nodules to Protect Symbiotic Nitrogen Fixation , 2020, Frontiers in Microbiology.

[20]  M. Rubio,et al.  CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers their synergistic roles in symbiotic nitrogen fixation. , 2019, The New phytologist.

[21]  A. Fernie,et al.  The role of nitrite and nitric oxide under low oxygen conditions in plants. , 2019, The New phytologist.

[22]  L. Sauviac,et al.  The Nitrate Assimilatory Pathway in Sinorhizobium meliloti: Contribution to NO Production , 2019, Front. Microbiol..

[23]  L. Romero,et al.  Signaling by hydrogen sulfide and cyanide through posttranslational modification. , 2019, Journal of experimental botany.

[24]  Jun Zhu,et al.  Alkyl hydroperoxide reductase is important for oxidative stress resistance and symbiosis in Azorhizobium caulinodans , 2019, FEMS microbiology letters.

[25]  T. Uchiumi,et al.  Stably Transformed Lotus japonicus Plants Overexpressing Phytoglobin LjGlb1-1 Show Decreased Nitric Oxide Levels in Roots and Nodules as Well as Delayed Nodule Senescence. , 2018, Plant & cell physiology.

[26]  N. Smirnoff,et al.  Hydrogen peroxide metabolism and functions in plants. , 2018, The New phytologist.

[27]  J. Stougaard,et al.  Altered plant and nodule development and protein S-nitrosylation in Lotus japonicus mutants deficient in S-nitrosoglutathione reductases. , 2019, Plant & cell physiology.

[28]  G. Alloing,et al.  Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia , 2018, Antioxidants.

[29]  S. Wienkoop,et al.  Sulfur Transport and Metabolism in Legume Root Nodules , 2018, Front. Plant Sci..

[30]  J. Olafsen Transport Processes , 2018, Sturge’s Statistical and Thermal Physics.

[31]  Juan Chen,et al.  Hydrogen sulfide promotes nodulation and nitrogen fixation in soybean-rhizobia symbiotic system , 2018, bioRxiv.

[32]  R. Hoffmann,et al.  Protein Carbonylation and Glycation in Legume Nodules1 , 2018, Plant Physiology.

[33]  G. Loake,et al.  Specificity in nitric oxide signalling , 2018, Journal of experimental botany.

[34]  J. Durner,et al.  Nitric oxide production in plants: an update. , 2018, Journal of experimental botany.

[35]  R. Radi Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine , 2018, Proceedings of the National Academy of Sciences.

[36]  J. Kangasjärvi,et al.  Reactive Oxygen Species in Plant Signaling. , 2018, Annual review of plant biology.

[37]  M. Delgado,et al.  Redefining nitric oxide production in legume nodules through complementary insights from electron paramagnetic resonance spectroscopy and specific fluorescent probes , 2018, Journal of experimental botany.

[38]  R. Banerjee,et al.  Chemical Biology of H2S Signaling through Persulfidation. , 2017, Chemical reviews.

[39]  V. Thomas,et al.  Emerging Roles of Nitric Oxide Synthase in Bacterial Physiology. , 2018, Advances in microbial physiology.

[40]  C. Quinto,et al.  Respiratory Burst Oxidase Homolog Gene A Is Crucial for Rhizobium Infection and Nodule Maturation and Function in Common Bean , 2017, Front. Plant Sci..

[41]  N. Rouhier,et al.  Post-translational modifications of Medicago truncatula glutathione peroxidase 1 induced by nitric oxide. , 2017, Nitric oxide : biology and chemistry.

[42]  L. Luo,et al.  Two-component regulatory system ActS/ActR is required for Sinorhizobium meliloti adaptation to oxidative stress. , 2017, Microbiological research.

[43]  K. Dehesh,et al.  Retrograde Signals: Integrators of Interorganellar Communication and Orchestrators of Plant Development. , 2017, Annual review of plant biology.

[44]  E. Fernández,et al.  Nitrate Reductase Regulates Plant Nitric Oxide Homeostasis. , 2017, Trends in plant science.

[45]  J. Cazareth,et al.  Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1 , 2017, Current Biology.

[46]  F. J. Corpas,et al.  Plant peroxisomes: A nitro-oxidative cocktail , 2017, Redox biology.

[47]  Jens Stougaard,et al.  Lotus Base: An integrated information portal for the model legume Lotus japonicus , 2016, Scientific Reports.

[48]  E. Fernández,et al.  A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas. , 2016, Plant, cell & environment.

[49]  J. Stougaard,et al.  Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus–Mesorhizobium loti symbiosis , 2016, Journal of experimental botany.

[50]  M. Margis-Pinheiro,et al.  Glutathione peroxidases as redox sensor proteins in plant cells. , 2015, Plant science : an international journal of experimental plant biology.

[51]  Alexandre Boscari,et al.  Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. , 2015, Journal of experimental botany.

[52]  J. Feijó,et al.  Nitric oxide: a multitasked signaling gas in plants. , 2015, Molecular plant.

[53]  N. Rouhier,et al.  Function of glutathione peroxidases in legume root nodules , 2015, Journal of experimental botany.

[54]  R. Radi,et al.  Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism. , 2015, The Plant journal : for cell and molecular biology.

[55]  C. Lindermayr,et al.  Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration , 2014, Journal of experimental botany.

[56]  P. Loughlin,et al.  Transport processes of the legume symbiosome membrane , 2014, Front. Plant Sci..

[57]  G. Loake,et al.  Selective protein denitrosylation activity of Thioredoxin-h5 modulates plant Immunity. , 2014, Molecular cell.

[58]  M. Parniske,et al.  Symbiosis and pathogenesis: what determines the difference? , 2014, Current opinion in plant biology.

[59]  J. Reichheld,et al.  NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thaliana cells. , 2013, Molecular plant.

[60]  J. Petrich,et al.  Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. , 2013, The Plant journal : for cell and molecular biology.

[61]  C. Bruand,et al.  Control of NO level in rhizobium-legume root nodules , 2013, Plant signaling & behavior.

[62]  Martin J. Mueller,et al.  ROS-mediated lipid peroxidation and RES-activated signaling. , 2013, Annual review of plant biology.

[63]  C. Foyer,et al.  Redox signaling in plants. , 2013, Antioxidants & redox signaling.

[64]  I. Damiani,et al.  Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis. , 2013, The New phytologist.

[65]  N. Fernández-García,et al.  Mitochondria are an early target of oxidative modifications in senescing legume nodules. , 2013, The New phytologist.

[66]  C. Bruand,et al.  Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. , 2012, The New phytologist.

[67]  F. Sánchez,et al.  A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia. , 2012, Plant & cell physiology.

[68]  A. Slusarenko,et al.  The biology of reactive sulfur species (RSS). , 2012, Plant physiology and biochemistry : PPB.

[69]  D. Maiti,et al.  Detection of S-Nitrosothiol and Nitrosylated Proteins in Arachis hypogaea Functional Nodule: Response of the Nitrogen Fixing Symbiont , 2012, PloS one.

[70]  A. Puppo,et al.  Sulfenylated proteins in the Medicago truncatula-Sinorhizobium meliloti symbiosis. , 2012, Journal of proteomics.

[71]  Wolfram Weckwerth,et al.  ProMEX – a mass spectral reference database for plant proteomics , 2012, Front. Plant Sci..

[72]  F. Walker,et al.  Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules , 2012, Proceedings of the National Academy of Sciences.

[73]  P. Poole,et al.  The rules of engagement in the legume-rhizobial symbiosis. , 2011, Annual review of genetics.

[74]  Alexandre Boscari,et al.  Nitric oxide in legume-rhizobium symbiosis. , 2011, Plant science : an international journal of experimental plant biology.

[75]  F. J. Corpas,et al.  High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration. , 2011, Plant, cell & environment.

[76]  J. Vangronsveld,et al.  Metal-Induced Oxidative Stress and Plant Mitochondria , 2011, International journal of molecular sciences.

[77]  I. Ribeiro,et al.  Glutamine Synthetase Is a Molecular Target of Nitric Oxide in Root Nodules of Medicago truncatula and Is Regulated by Tyrosine Nitration1[W][OA] , 2011, Plant Physiology.

[78]  P. Aparicio-Tejo,et al.  Expression and localization of a Rhizobium-derived cambialistic superoxide dismutase in pea (Pisum sativum) nodules subjected to oxidative stress. , 2011, Molecular plant-microbe interactions : MPMI.

[79]  K. Dietz Peroxiredoxins in plants and cyanobacteria. , 2011, Antioxidants & redox signaling.

[80]  Alexandre Boscari,et al.  Nitric oxide is required for an optimal establishment of the Medicago truncatula–Sinorhizobium meliloti symbiosis , 2011, The New phytologist.

[81]  F. Cejudo,et al.  Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus1[W][OA] , 2011, Plant Physiology.

[82]  M. Hashimoto,et al.  Nitric oxide production induced in roots of Lotus japonicus by lipopolysaccharide from Mesorhizobium loti. , 2011, Plant & cell physiology.

[83]  M. Delgado,et al.  Regulation and symbiotic role of nirK and norC expression in Rhizobium etli. , 2011, Molecular plant-microbe interactions : MPMI.

[84]  E. Danchin,et al.  A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning , 2011, The New phytologist.

[85]  M. Delgado,et al.  Involvement of Bradyrhizobium japonicum denitrification in symbiotic nitrogen fixation by soybean plants subjected to flooding , 2011 .

[86]  F. Pallardó,et al.  A nuclear glutathione cycle within the cell cycle. , 2010, The Biochemical journal.

[87]  L. Sweetlove,et al.  ROS signalling--specificity is required. , 2010, Trends in plant science.

[88]  C. Bruand,et al.  The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti. , 2010, Molecular plant-microbe interactions : MPMI.

[89]  D. Richardson,et al.  Production of nitric oxide and nitrosylleghemoglobin complexes in soybean nodules in response to flooding. , 2010, Molecular plant-microbe interactions : MPMI.

[90]  N. Rouhier Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly. , 2010, The New phytologist.

[91]  Y. Kanayama,et al.  Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules. , 2010, Journal of plant physiology.

[92]  C. Boniface,et al.  Physiological Roles of Glutathione S-Transferases in Soybean Root Nodules1[C][W][OA] , 2009, Plant Physiology.

[93]  K. Kucho,et al.  Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus. , 2009, The Plant journal : for cell and molecular biology.

[94]  S. Tabata,et al.  The glutathione peroxidase gene family of Lotus japonicus: characterization of genomic clones, expression analyses and immunolocalization in legumes. , 2009, The New phytologist.

[95]  F. Sánchez,et al.  Fast, transient and specific intracellular ROS changes in living root hair cells responding to Nod factors (NFs). , 2008, The Plant journal : for cell and molecular biology.

[96]  K. Kucho,et al.  Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. , 2008, Molecular plant-microbe interactions : MPMI.

[97]  A. Puppo,et al.  H2O2 Is Required for Optimal Establishment of the Medicago sativa/Sinorhizobium meliloti Symbiosis , 2007, Journal of bacteriology.

[98]  S. Tabata,et al.  Characterization of genomic clones and expression analysis of the three types of superoxide dismutases during nodule development in Lotus japonicus. , 2007, Molecular plant-microbe interactions : MPMI.

[99]  D. Richardson,et al.  The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules. , 2007, Microbiology.

[100]  John Doyle,et al.  Rules of engagement , 2007, Nature.

[101]  A. Puppo,et al.  Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. , 2006, Molecular plant-microbe interactions : MPMI.

[102]  S. Tabata,et al.  Biosynthesis of Ascorbic Acid in Legume Root Nodules1 , 2006, Plant Physiology.

[103]  K. Asada Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions1 , 2006, Plant Physiology.

[104]  C. Subbaiah,et al.  Mitochondrial Reactive Oxygen Species. Contribution to Oxidative Stress and Interorganellar Signaling , 2006, Plant Physiology.

[105]  S. Rombauts,et al.  Aging in Legume Symbiosis. A Molecular View on Nodule Senescence in Medicago truncatula1[W] , 2006, Plant Physiology.

[106]  T. Uchiumi,et al.  A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide. , 2006, Molecular plant-microbe interactions : MPMI.

[107]  J. Michiels,et al.  Defence of Rhizobium etli bacteroids against oxidative stress involves a complexly regulated atypical 2‐Cys peroxiredoxin , 2005, Molecular microbiology.

[108]  M. M. Lucas,et al.  Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. , 2004, The New phytologist.

[109]  M. M. Lucas,et al.  Immunolocalization of ferritin in determinate and indeterminate legume root nodules , 1998, Protoplasma.

[110]  A. Igamberdiev,et al.  Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. , 2004, Journal of experimental botany.

[111]  F. Provan,et al.  Mechanism and importance of post-translational regulation of nitrate reductase. , 2004, Journal of experimental botany.

[112]  C. Vance,et al.  Cellular localization of nodule-enhanced aspartate aminotransferase in Medicago sativa L. , 2004, Planta.

[113]  C. Vance,et al.  Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. , 2004, Molecular plant-microbe interactions : MPMI.

[114]  C. Frova The plant glutathione transferase gene family: genomic structure, functions, expression and evolution , 2003 .

[115]  Y. Okamura,et al.  Nitrate-independent expression of plant nitrate reductase in Lotus japonicus root nodules. , 2003, Journal of experimental botany.

[116]  Isabel M. Santos,et al.  Expression of the Plastid-Located Glutamine Synthetase ofMedicago truncatula. Accumulation of the Precursor in Root Nodules Reveals an in Vivo Control at the Level of Protein Import into Plastids1 , 2003, Plant Physiology.

[117]  S. Encarnación,et al.  Only one catalase, katG, is detectable in Rhizobium etli, and is encoded along with the regulator OxyR on a plasmid replicon. , 2003, Microbiology.

[118]  A. Puppo,et al.  Possible roles for a cysteine protease and hydrogen peroxide in soybean nodule development and senescence , 2003 .

[119]  A. Puppo,et al.  Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. , 2003, Molecular plant-microbe interactions : MPMI.

[120]  D. Cook,et al.  Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula. , 2002, Molecular plant-microbe interactions : MPMI.

[121]  Ralph A. Bradshaw,et al.  Post‐Translational Modifications , 2002 .

[122]  W. Kaiser,et al.  Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. , 2002, Journal of experimental botany.

[123]  W. Kaiser,et al.  Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. , 2001, Journal of experimental botany.

[124]  L. Duret,et al.  A Medicago truncatula homoglutathione synthetase is derived from glutathione synthetase by gene duplication. , 2001, Plant physiology.

[125]  D. Touati,et al.  Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. , 2001, Molecular plant-microbe interactions : MPMI.

[126]  I. Iturbe-Ormaetxe,et al.  The antioxidants of legume nodule mitochondria. , 2001, Molecular plant-microbe interactions : MPMI.

[127]  M. C. Rubio,et al.  Glutathione and homoglutathione synthetases of legume nodules. Cloning, expression, and subcellular localization. , 2000, Plant physiology.

[128]  D. Touati,et al.  Critical protective role of bacterial superoxide dismutase in Rhizobium–legume symbiosis , 2000, Molecular microbiology.

[129]  N. J. Brewin,et al.  Involvement of diamine oxidase and peroxidase in insolubilization of the extracellular matrix: implications for pea nodule initiation by Rhizobium leguminosarum. , 2000, Molecular plant-microbe interactions : MPMI.

[130]  D. Touati,et al.  Characterization of an Atypical Superoxide Dismutase from Sinorhizobium meliloti , 1999, Journal of bacteriology.

[131]  D. Klessig,et al.  Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[132]  R. Dixon,et al.  Nitric oxide functions as a signal in plant disease resistance , 1998, Nature.

[133]  A. Puppo,et al.  Direct detection of radicals in intact soybean nodules: presence of nitric oxide-leghemoglobin complexes. , 1998, Free radical biology & medicine.

[134]  I. Iturbe-Ormaetxe,et al.  Antioxidant defenses in the peripheral cell layers of legume root nodules. , 1998, Plant physiology.

[135]  F. Minchin Regulation of oxygen diffusion in legume nodules , 1997 .

[136]  M. Golvano,et al.  Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus , 1996, FEBS letters.

[137]  A. Puppo,et al.  Reaction of ferric leghemoglobin with H2O2: formation of heme-protein cross-links and dimeric species. , 1995, Biochimica et biophysica acta.

[138]  M. Becana,et al.  Transition metals in legume root nodules: iron-dependent free radical production increases during nodule senescence. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[139]  M. M. Lucas,et al.  Effect of Nitrate on Peroxisome Ultrastructure and Catalase Activity in Nodules of Lupinus albus L. cv. Multolupa , 1990 .

[140]  L. M. Sandalio,et al.  Isoenzymes of Superoxide Dismutase in Nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L.) Walp. , 1989, Plant physiology.

[141]  H. Evans,et al.  Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[142]  D. Verma,et al.  Primary structure of the soybean nodulin-35 gene encoding uricase II localized in the peroxisomes of uninfected cells of nodules. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[143]  J. Rigaud,et al.  Nitrite and Nitric Oxide as Inhibitors of Nitrogenase from Soybean Bacteroids , 1982, Applied and environmental microbiology.

[144]  A. Puppo,et al.  Role of superoxide anion in leghemoglobin autoxidation , 1981 .