Tailoring Transient-Amorphous States: Towards Fast and Power-Efficient Phase-Change Memory and Neuromorphic Computing

A new methodology for manipulating transient-amorphous states of phase-change memory (PCM) materials is reported as a viable means to boost the speed, yet reduce the power consumption of PC memories, and is applicable to new forms of PCM-based neuromorphic devices. Controlling multiple-pulse interactions with PC materials may provide an opportunity toward developing a new paradigm for ultra-fast neuromorphic computing.

[1]  S. G. Bishop,et al.  Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid , 2009, Science.

[2]  J. Christian,et al.  The theory of transformations in metals and alloys , 2003 .

[3]  C. Wright,et al.  Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials , 2011, Advanced materials.

[4]  S.J. Koester,et al.  Programmable via Using Indirectly Heated Phase-Change Switch for Reconfigurable Logic Applications , 2008, IEEE Electron Device Letters.

[5]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[6]  O. Cueto,et al.  Physical aspects of low power synapses based on phase change memory devices , 2012 .

[7]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[8]  Dmitri B. Strukov,et al.  Nanotechnology: Smart connections , 2011, Nature.

[9]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[10]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[11]  Jonathan R. Whitlock,et al.  Learning Induces Long-Term Potentiation in the Hippocampus , 2006, Science.

[12]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[13]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[14]  Dae-Hwan Kang,et al.  Understanding on the current-induced crystallization process and faster set write operation thereof in non-volatile phase change memory , 2012 .

[15]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[16]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[17]  C. Wright,et al.  Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices , 2004 .

[18]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[19]  Urs Gerber,et al.  A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit , 2004, Nature.

[20]  S. G. Bishop,et al.  Evolution of subcritical nuclei in nitrogen-alloyed Ge2Sb2Te5 , 2012 .

[21]  Y. Dan,et al.  Contribution of individual spikes in burst-induced long-term synaptic modification. , 2006, Journal of neurophysiology.

[22]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[23]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[24]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[25]  Kenneth F. Kelton,et al.  Nucleation in condensed matter : applications in materials and biology , 2010 .